3D сады


Система допусков и посадок в машиностроении


Система допусков и посадок в машиностроении

Посадку деталей, т. е. получение нужного зазора или натяга между сопрягаемыми поверхностями, можно осуществить двумя способами: по системе отверстия и по системе вала.

Система допусков в машиностроении построена для сопряжений цилиндрических поверхностей, у которых сопрягаемым размером является диаметр. При этом охватывающей поверхностью служит отверстие, а охватываемой — сопрягаемый с ним вал. В дальнейшем изложении эта система допусков употребляется применительно к сопрягаемым поверхностям, получаемым при фрезеровании, т. е. стержням и пазам, и под словом «отверстие» подразумевается паз, а под словом «вал» — стержень.

Система отверстия.

Чтобы осуществить нужную посадку, т. е. получить нужный зазор или натяг между валом и отверстием, можно назначить больший или меньший размер вала, оставляя размер отверстия неизменным. Если диаметр вала будет больше диаметра отверстия, получим натяг (неподвижную посадку); если диаметр вала будет меньше, получим зазор (свободную посадку).

Следовательно, оставляя для данного номинального диаметра предельные размеры отверстия одинаковыми при всех посадках одного и того же класса точности, осуществляем необходимую посадку за счет увеличения или уменьшения размеров вала, т. е. осуществляем зазор или натяг. Такая система постоянного размера отверстия и изменяющегося размера вала называется системой отверстия. На рис. 5а схематически показано, при каких посадках получаются зазоры, а при каких — натяги по системе отверстия.

При системе отверстия на чертежах возле номинального размера отверстия ставят букву А с цифрой, показывающей класс точности: А1; А; А3; А4 и т. д., а возле номинального размера вала ставят букву, которая обозначает посадку, с цифрой, указывающей на класс точности. Например, Н2а; Х3; Ш4; Л5 и т. д.

Система вала.

Можно осуществить нужную посадку, т. е. получить нужный зазор или натяг между валом и отверстием, оставляя размер вала неизменным и назначая больший или меньший размер отверстия. Если диаметр отверстия назначим меньше диаметра вала, получим натяг (неподвижную посадку); если диаметр отверстия назначим большим, получим зазор (свободную посадку).

Следовательно, оставляя для данного номинального диаметра предельные размеры вала одинаковыми при всех посадках одного и того же класса точности, можно осуществить зазор или натяг, т. е. необходимую посадку за счет увеличения или умень­шения предельных размеров отверстия. Такая система постоянного размера вала и изменяющегося размера отверстия называется системой вала. На рис. 5, б схематически показано, при каких посадках получаются зазоры и натяги по системе вала.

При системе вала на чертежах возле номинального размера вала ставят букву В с цифрой, показывающей класс точности, например: В1; В; В2а; В3 и т. д., а возле размеров отверстия — букву, обозначающую посадку, с цифрой, указывающей на класс точности. Например: Н1; С2а; Х3; Л4 и т. д.

На большинстве отечественных машиностроительных заводов применяют систему отверстия. Это объясняется тем, что получе­ние различных размеров отверстия в зависимости от посадки для одного и того же номинального диаметра сложнее, так как для каждой посадки нужен свой мерный режущий инструмент, и, следовательно, это обходится дороже, чем получение различ­ных диаметров валов методом точения или шлифования без при­менения мерного инструмента.

Как уже указывалось, фрезеровщику редко приходится иметь дело с обработкой цилиндрических поверхностей (валов и отверстий). Чаще всего он занят обработкой пазов, канавок, высту­пов и т. п., при которой необходимо выдерживать размеры по длине, ширине, высоте, толщине и глубине. В этих случаях для чертежных обозначений размеров пазов, канавок, брусков, и т. п. пользуются теми же обозначениями, что и для валов и отверстий.

Система допусков.

Система допусков, принятая в СССР, обязательна для всех заводов и предприятий Советского Союза. Предельные отклонения в микронах (мк) для системы отверстия и системы вала всех классов точности и всех посадок приводятся в соответствующих таблицах, имеющихся в спра­вочниках, в том числе и в «Справочнике молодого фрезеровщика», изданном Профтехиздатом в 1962 г

Обозначение допусков на чертежах.

Если фрезеровщик видит на чертеже номинальный размер и возле него букву и цифры, т. е. условные обозначения системы допусков, посадки и класса точности, он еще не знает, какие отклонения в размере детали допустимы. Рабочий должен посмотреть в таблицу допусков и найти в ней предельные отклонения от номинального размера для данной системы, класса точности и посадки. После этого, лишь определив предельные размеры детали, он может приступить к обработке детали.

Иногда вместо условного обозначения посадки и класса точности рядом с номинальным размером ставят числовое обозначение отклонения от номинального размера.

На рис. 6 показано, как проставляются условные и числовые обозначения на рабочих чертежах в том и другом случаях.

В чертежах проставляют отклонения только на сопрягаемые размеры. Размеры, на которых не показаны отклонения, являются свободными и выполняются с допусками по 5-му или 7-му классам.

Кроме допусков на линейные размеры, на чертежах в случае необходимости проставляют допускаемые отклонения от геометрической формы — допускаемые неплоскостность, непараллельность или неперпендикулярность сопряженных поверхностей. Величина этих допусков выражается обычно в сотых долях миллиметра на 100 или 300 мм длины. Так, допускаемая при фрезеровании данной детали неплоскостность обработанной поверхности в 0,02 мм на длине 100 мм обозначается на чертеже в необходимом месте 0,02: 100; точно так же допускаемая при фрезеровании другой детали непараллельность двух обработан­ных плоскостей в 0,03 мм на длине 300 мм обозначается на чертеже 0,03 :300.

Автор: С. В. Аврутин Источник: Основы фрезерного дела, С. В. Аврутин, 1962г Дата в источнике: 1962г

mplast.by

Единая система допусков и посадок в машиностроении: основные термины и расчеты

До великой промышленной революции 18 века каждый механизм изготавливался одним мастером – от начала и до конца. Самыми сложными механизмами в то время были часы, навигационные приборы и замки. Каждая деталь подгонялась к другой индивидуально, и в двух часах, вышедших с одной мануфактуры не было двух одинаковых деталей. При ремонте невозможно было вынуть износившуюся деталь и заменить ее новой, так как они не подходили друг к другу. Развитие промышленности и переход от мануфактур к фабрикам привнесло такие понятия, как разделение труда и серийное производство. Появилась необходимость стандартизации, которая позволяла бы изготавливать одинаковые (в определенных пределах) детали в рамках одной фабрики, а еще лучше - в рамках целой отрасли. Стандартные детали, выпускаемые одной фабрикой, можно было бы использовать на многих предприятиях, а при ремонте можно было бы просто выбросить износившуюся деталь и заменить ее новой.

Для этого было необходимо создать систему стандартов, которые позволили бы организовать производство деталей с четко определенными требованиями, сначала для каждой фабрики, а затем – для отрасли или всей промышленности в целом. Так появилась инженерная дисциплина, которая называется «основы взаимозаменяемости». Именно там родились такие термины, как допуски, посадки, расчет размерных цепей и многое другое.

В процессе обучения многих не раз путало и пугало понятие допусков и посадок. Попробуем разобраться с этим и понять, для чего они предназначены. Ведь без использования этих понятий невозможно правильное и точное соединение деталей в машиностроении и металлообработке.

Вся система допусков и посадок нацелена на стандартизацию деталей и обеспечение взаимозаменяемости их при сборке или ремонте механизмов и машин различной степени сложности. Для решения этой проблемы все серийно выпускаемые изделия должны быть выполнены с определенной точностью механической обработки. Точность производства деталей определяет система допусков и посадок, разработанных специалистами по стандартизации. Эти параметры всегда присутствуют в чертежах и технических заданиях на обработку. Задача этой статьи – научить правильно читать и понимать чертежи, а не только видеть номинальные габариты детали.

Описание основных определений и терминов

В основе построения системы посадок лежит понятие о системе отверстия (все посадки образуются соединением валов различного размера с основным отверстием) и системе вала (все посадки образуются соединением отверстий различного размера с основным валом).

Различают посадки, допуски размеров и посадок.

Допуском называют регламентированную область отклонений от номинального размера детали. При отображении на чертеже эта область составляет промежуток между линиями или числами, которые соответствуют верхнему и нижнему пределам отклонения от номинала.

Область допуска описывает не только величину допуска, но и размещение его относительно номинального размера детали или поверхности. Размещение области может быть относительно нулевой линии:

•      симметричным и асимметричным;

•      выше или ниже его;

•       со смещением в одну из сторон.

В инженерной графике принято указывать предельные отклонения в миллиметрах над размерной линией после обозначения номинала с учетом их знаков.

Посадка – параметр, который характеризует соединение деталей. Он определяется величиной получающихся при соединении зазоров или натягов. Все посадки делятся на три основных типа: 

•     с зазором;

•     с натягом;

•     переходные.

Допуском посадки считается разность между наибольшим и наименьшим зазором, которые составляют соединение.

Вследствие неизбежного возникновения области рассеяния размеров сопрягаемых деталей от наибольшего до наименьшего значения, возникает рассеяние зазоров и натягов.

Крайние значения зазоров и натягов рассчитываются по формулам. Точность посадки считается более высокой, если колебание зазоров или натягов минимально.

Допуски и посадки нормированы государственными стандартами:

1.         ЕСДП - “Единая система допусков и посадок”.

2.         ОНВ - “Основные нормы взаимозаменяемости”.

Первая система применяется при составлении допусков и посадок размеров гладких элементов деталей. Также, она работает для посадок, образуемых соединениями этих деталей.

ОНВ регламентирует минимальные и максимальные отклонения и зазоры в резьбовых и конических, шпоночных и шлицевых соединениях. Требования основных норм взаимозаменяемости учитываются при расчетах зубчатых передач.

Допуски и посадки необходимо указывать в технологической документации:

•       эскизах;

•       чертежах;

•       технологических картах и т.п.

Основой всех техпроцессов, при их составлении, служат правильно выбранные допуски и посадки. Осуществление контроля качества деталей в разрезе точности происходит на этапе производства путем проверки соответствия их предельных отклонений от номинальных размеров.

Номинальные размеры и отклонения от них

Когда создается деталь, то, прежде всего, формируется точный чертеж с ее номинальными размерами. Однако, на практике невозможно изготовление двух абсолютно точных деталей. Поэтому все изделия изготавливаются с тем или иным классом точности.

Чем выше этот класс, тем меньше размер отклонений от номинального размера детали. Таким образом, допуск характеризует величину отклонений в размере. Он бывает только положительным, хотя размер детали по факту обработки может отличаться от номинального, как в большую, так и в меньшую сторону.

Более точно допуском можно назвать разность между максимальным и минимальным размером детали при ее механической обработке. Предельные размеры определенны классом точности. Между ними должен находиться размер любой детали из партии. В результате использования мерительного инструмента мы, после воздействия на заготовку, можем установить ее действительный размер.

Принято считать, что, если фактический размер после обработки находится в пределах допусков, то деталь пригодна к сборке и является технологически годной.

Рассмотрим пример механической обработки детали «Штанга толкателя».

Данная деталь помогает своевременному открытию и закрытию клапанов ДВС и, при работе под нагрузкой, подвержена выработке. В частности, на головке штанги образуется борозда, которая может способствовать залипанию, заклиниванию клапанов в неправильном положении и, как следствие, приводить к неправильной работе двигателя. Для ликвидации подобной канавки (выработки) применяется токарная ремонтная операция: «Протачивание штанги толкателя» в пределах минимального значения допуска на механическую обработку.

Задача токаря при выполнении такой операции двояка:

1. Снятие металла, выравнивание поверхности головки штанги.

2. Замеры и выбраковка изделий.

То есть, квалифицированный рабочий должен сначала устранить шероховатость поверхности, после чего проверить соответствие на попадание обработанной поверхности в нижнее поле допуска. Штанга, головка которой попадает в значения нижнего отклонения допуска, считается отремонтированной и готовой к повторному использованию. Те же изделия, которые имеют меньший диаметр после обработки, чем указано в допуске, выбраковываются и идут на переплавку.

Итак, допуск - это модульное значение разницы между граничными отклонениями. Этот параметр задает допускаемые границы действительных размеров годных деталей в партии и фиксирует точность изготовления.

Говоря об экономической части понимания значения допуска, следует отметить, что с уменьшением размеров отклонений качество изделий возрастает. Однако, стоимость их производства нелинейно увеличивается. Крайне важно, при составлении чертежей, учитывать все условия, при которых будет эксплуатироваться каждая деталь. И формировать такие допуски на мехобрабоку, которые являются необходимыми и достаточными для данных условий. Ведь излишняя точность в классе изготовления детали могут сделать ее применение экономически нецелесообразным.

В вышеприведенном примере почти все штанги толкателей при малом допуске можно было бы забраковать, вместо их восстановления и возвращения на службу.

Посадки, как способ эффективного сопряжения поверхностей

Детали при сборке должны эффективно выполнять свои функции. Для обеспечения их регламентируемого взаимодействия выработана система посадок. В технологических процессах посадкой называют условия соединения деталей, которые определяются размерами зазоров между ними или натягов. Посадка описывает степень свободы взаимодействия деталей в паре. Как частный случай, может описывать степень сопротивления их взаимному смещению.

Рассмотрим классический случай с отверстием и валом, работающим в нем. Каждая из деталей имеет свой номинальный размер. Однако, каждая деталь из партии одинаковых изделий изготавливаются в пределах своих допусков.

Поэтому, при их соединении, возможен зазор, который технологически допустим. Величина такого зазора не может превышать разность допусков на обработку этих деталей. То есть, зазор определенной величины не послужит причиной неправильной работы соединения, а изделие сможет выполнять свои функции без повышенного износа или биения.

Также, возможно соединение вала и отверстия с натягом. Такой тип соединения возможен, когда фактический размер вала превышает размер отверстия в пределах допусков. Технологически осуществляется запрессовка такого вала в отверстие, при которой гарантируется качественная работа соединения.

На практике часто имеет место переходная посадка. Произвольно соединяя различные детали из партии, возможно получение как зазора между деталями, так и натяга. Фактически, мы имеем полное или частично перекрытие полей допусков изделий.

Расчет посадок и допусков по квалитетам точности

Квалитет – IT представляет собой степень точности, то есть совокупность допусков, рассматриваемых как соответствующие одному уровню точности для всех номинальных размеров.

В ЕСПД классы точности называют для удобства квалитетами. С ростом квалитета точность изготовления деталей понижается вследствие увеличения допуска на ее механическую обработку. Всего насчитывают 19 квалитетов: от 01 до 17.

Существуют специальные сводные таблицы, в которых описано поле допусков по возрастанию номинальных размеров. Считается, что они соответствуют одному и тому же уровню точности, определяемому квалитетом, а именно - его порядковым номером.

Для каждого номинального размера допуск для разных квалитетов может быть неодинаков. Он колеблется в зависимости от способов обработки изделий. В ЕСДП наивысшим квалитетом точности считают 01, а допуск квалитета условно обозначают латиницей – IT. После этого обозначения проставляется номер квалитета.

При составлении технической документации, чертежей под словом допуск понимается допуск системы. Рассмотрим подробнее, для каких видов деталей предусмотрены различные квалитеты.

•   IT01, IT0 и IT1 оценивают точность измерительных приборов с плоскопараллельными поверхностями;

•   IT2, IT3 и IT4 регламентируют точность гладких калибров-пробок и калибров-скоб;

•   5-й и 6-й квалитеты используют при определении допусков деталей для высокоточных ответственных соединений, таких как шпинделей прецизионного оборудования, подшипников качения, шеек коленвалов и т.п.

•  IT7 и IT8 считаются самыми массовыми в машиностроении. С помощью этих квалитетов описывают допуски на изготовление размеров деталей ДВС, авто- и авиатранспорта, станков для обработки металла, измерительных приборов и т.д. Считается, что для ответственных соединений деталей в этих отраслях данной степени точности при их изготовлении достаточно и экономически – целесообразно.

•    IT9 оценивает точность размеров деталей в полиграфии и тепловозостроении, например, подшипники скольжения неточных валов; при изготовлении сельхозтехники, подъемно-транспортных механизмов, текстильных машин.

•   10-й квалитет используют для описания размеров неответственных соединений при производстве подвижного состава, сельскохозяйственных машин и посадочных мест холостых шкивов на валах.

•  IT11 и IT12 используют для регламентирования размеров в литых и штампованных деталях с большими зазорами, которые используются в неответственных соединениях.

•   Низшие квалитеты с 13го по 17й применяют для остальных неответственных размеров деталей. Как правило, это не входящие в соединения детали, в которых допускаются свободные размеры. Они же могут регламентировать межоперационные размеры.

Допуски в квалитетах 5—17 определяют по общей формуле:

1Tq = ai, где:

q — номер квалитета;

а — безразмерный коэффициент, именуемый числом единиц допуска. Устанавливается для каждого квалитета и не зависит от номинального размера;

i — единица допуска (мкм) — множитель, находящийся в функции от номинального размера;

Применяют следующее стандартное правило: заданным квалитетам и интервалам номинальных размеров соответствует значение допуска, которое является постоянным для валов и отверстий.

С 5-го квалитета, допуски с порядковым понижением квалитета увеличиваются на 60%, поскольку используется знаменатель геометрической прогрессии, который равен 1,6. Таким образом, мы имеем десятикратное увеличение допусков через каждые 5 квалитетов.

Особенности расчетов с помощью размерных цепей

Одним из важнейших моментов при разработке допусков и посадок является расчет размерной цепи. Совокупность всех зависимых размеров в конструкции изделия или машины, которые образуют замкнутую цепь и определяют взаимное положение осей или поверхностей, называют размерной цепью. Грамотный анализ необходим для определения оптимального соотношения размеров, которые взаимосвязаны. Подробные геометрические расчеты используют при создании машин и механизмов, приспособлений и приборов.  Без них не обойтись на стадии проектирования любого техпроцесса.

В любой определенной замкнутой размерной цепи выбирается некая точка отсчета. Размеры, образующие размерную цепь, не могут назначаться независимо. Параметры хотя бы одного из размеров определяются остальными. Определив такое ключевое звено, можно правильно подобрать значение и точность, остальных размеров в цепи.

Каждый из размеров механизма или машины, образующих размерную цепь, именуют звеном. Такими звеньями становятся угловые или линейные параметры изделия:

•   промежутки между плоскостями или осями;

•    натяги и зазоры;

•    диаметральные размеры;

•    перекрытия и мертвые ходы;

•    отклонения формы и расположения поверхностей.

Каждая размерная цепь имеет одно начальное звено и несколько составляющих звеньев, последнее из которых связано с исходным. За точку отсчета принимается исходное звено, к которому привязывается основное требование точности. В соответствии с техусловиями, качество изделия предопределяет точность его исходного звена.

При сборке изделия исходное звено часто замыкает размерную цепь. Его называют конечным или замыкающим. Оно представляет собой законченный результат изготовления всех остальных звеньев цепи в ходе выполнения последовательных действий.

Остановимся подробнее на звеньях, которые входят в цепь. Они подразделяются на две группы.

→  Группа увеличивающихся звеньев – ее составляют звенья, с увеличением которых увеличивается и конечное звено.

←  Группа уменьшающихся звеньев, к которой относят звенья, с убыванием их размера уменьшается и замыкающее звено.

Основные рекомендации для проведения размерного анализа можно свести к следующим критериям при нахождении ключевых звеньев:

1.         Грамотная постановка задачи, для решения которой производят расчет размерной цепи или группы цепей. Каждая цепь должна содержать не более одного замыкающего или исходного звена.

2.         Установка требований к точности изделия для правильного определения исходного звена, которые подразделяются на:

•    требования к качеству изделия по точности взаимного расположения сборочных единиц;

•    условия собираемости изделий, зависящие от точности взаимной ориентации его деталей и правильного соотношения сборочных размеров.

Теория размерных цепей помогает решить многочисленные технологические, конструкторские и метрологические задачи. Она является неотъемлемым этапом при производстве и эксплуатации изделий, не говоря уже о конструкторском, предваряющем производство, периоде. На этапе конструкторской разработки устанавливаются кинематические и геометрические связи между размерами. Инженеры-конструкторы производят расчет номиналов их значений, а также возможных отклонений и допусков в размерах звеньев.

В ходе составления нового технологического процесса проводят расчет межоперационных размеров, всех припусков и допусков. Для него крайне важно произвести:

•    обоснование последовательности операций;

•    просчет требуемой точности оснастки для изготовления изделий и их сборки;

•    разработку технических условий на машины, их составные части;

•    определение средств и методов измерений для контролируемых деталей.

Прямая и обратная задачи

Размерные цепи нашли широкое применение при решении прямой и обратной задач по определению допусков и посадок в деталях. Эти задачи отличает последовательность расчетов, собственно, откуда и происходят их названия. Они взаимосвязаны между собой, а решение одной из них может являться проверкой другой.

Итак, что же из себя представляет прямая задача? По сути, это расчет от определенного теоретически исходного звена. В ходе ее решения определяют номинальные размеры, допуски и предельные отклонения всех элементов (звеньев) размерной цепи. Причем, расчет ведется от заданных допусков и номиналов исходного звена.

При обратной задаче расчет ведется исходя из значений допусков и размеров составляющих звеньев. Процесс позволяет определить номинальный размер, допуск и предельные отклонения замыкающего звена.

Расчеты размерных цепей рекомендуют производить:

•   методом экстремумов, который принимает во внимание только предельные отклонения составляющих звеньев;

•   вероятностным методом, который учитывает закон нормального распределения размеров деталей при их изготовлении и случайный характер их сочетания в сборке.

Способы получения искомой точности начального звена

На практике применяются 5 способов необходимой точности начального звена:

1.         Полная взаимная заменяемость.

2.         Вероятностный метод.

3.         Способ селективной сборки.

4.         Пригонка.

5.         Регулировка положения относительно друг друга.

Классификация способов получения необходимой точности исходного звена изложена в таблице по стандартизации.

Конструктивные нюансы изделия, его функциональное назначение, стоимость изготовления и сборки, а также другие параметры важно учитывать при выборе способа получения заданной точности исходного или замыкающего звена. Уровень работы квалифицированного специалиста определяется выбором способа достижения точности с определенными параметрами, который позволит максимально сократить эксплуатационные и технологические издержки.

Самым перспективным, хотя не всегда возможным, является способ полной взаимной заменяемости. Необходимо стремиться к тому, чтобы сборка деталей или изделия производилась без подбора, пригонки или регулировки. Идеальный вариант, когда все собранные изделия отвечают всем параметрам взаимной заменяемости, не часто встречается.

Наиболее экономически оправданным во многих случаях является вероятностный метод. Он позволяет определять граничные, а значит более дешевые квалитеты при малом проценте бракованных деталей.

Четкая система допусков и посадок, а также методов их определения, позволяет избежать излишних затрат на всех этапах производства: от проектирования до серийного выпуска готовой продукции.

kospas.ru

Система допусков и посадок

Системой допусков и посадок называют совокупность рядов допусков и посадок, закономерно построенных на основе опыта, теоретических и экспериментальных исследований и оформленных в виде стандартов. Система предназначена для выбора минимально необходимых, но достаточных для практики вариантов допусков и посадок типовых соединений деталей машин, дает возможность стандартизовать режущие инструменты и калибры, облегчает конструирование, производство и достижение взаимозаменяемости изделий и их частей, а также обусловливает достижение их качества.

Система допусков и посадок ИСО для типовых деталей машин построена по единым принципам. Предусмотрены посадки в системе отверстия (СА) и в системе вала (СВ) (рис.4). Посадки в системе отверстия - посадки, в которых различные зазоры и натяги получаются соединением различных валов с основным отверстием (рис.4, а), которое обозначают Н. Посадки в системе вала - посадки, в которых различные зазоры и натяги получаются соединением различных отверстий с основным валом (рис.4, б), который обозначают h.

Рисунок 4 - Примеры расположения полей допусков для посадок

в системе отверстия (а) и в системе вала (б)

Для всех посадок в системе отверстия нижнее отклонение отверстия EI=0, т.е. нижняя граница поля допуска основного отверстия , всегда совпадает с нулевой линией. Для всех посадок в системе вала верхнее отклонение основного вала es=0, т.е. верхняя граница поля допуска вала всегда совпадает с нулевой линией. Поле допуска основного отверстия откладывают вверх, поле допуска основного вала - вниз от нулевой линии, т.е. в материал детали.

Такую систему допусков называют односторонней предельной.

В системе отверстия различных по предельным размерам отверстий меньше, чем в системе вала, а следовательно, меньше номенклатура режущего инструмента, необходимого для обработки отверстий. В связи с этим преимущественное распространение получила система отверстия.

Для образования посадок с различными зазорами и натягами в системе ИСО для размеров до 500 мм предусмотрено 27 вариантов основных отклонений валов и отверстий. Основное отклонение - это одно из двух отклонений (верхнее или нижнее), используемое для определения положения поля допуска относительно нулевой линии (рис.5).

Каждая буква обозначает ряд основных отклонений, значение которых зависит от номинального размера.

Основные отклонения отверстий построены так, чтобы обеспечить посадки в системе вала, аналогичные посадкам в системе отверстия. Они равны по абсолютному значению и противоположны по знаку основным отклонениям валов, обозначаемых той же буквой.

Рисунок 5 - Основные отклонения, принятые в системе ИСО

В каждом изделии детали разного значения изготовляют с различной точностью. Для нормирования требуемых уровней точности установлены квалитеты изготовления деталей и изделий. Под квалитетомпонимают совокупность допусков, характеризуемых постоянной относительной точностью для всех номинальных размеров данного диапазона (например, от 1 до 500 мм). Точность в пределах одного квалитета зависит только от номинального размера.

В системе ИСО установлено 19 квалитетов: 01,0,1,2,...,17. Для квалитетов 5-17 при переходе от одного квалитета к следующему, более грубому, допуски возрастают на 60%. Через каждые пять квалитетов допуски увеличиваются в 10 раз.

Для каждого квалитета построены ряды допусков, в каждом из которых различные размеры имеют одинаковую относительную точность.

Для построения рядов допуска каждый из диапазонов размеров, в свою очередь, разделен на несколько интервалов. Для номинальных размеров от 1 до 500 мм установлено 13 интервалов: до 3, свыше 3 до 6, свыше 6 до 10 мм, ..., свыше 400 до 500 мм. Для всех размеров, объединенных в один интервал, например для размеров свыше 6 до 10 мм, значения допусков приняты одинаковыми.

Калибры

Годность деталей с допуском от IT6 до IT17, особенно при массовом и крупносерийном производствах, наиболее часто проверяют предельными калибрами. Комплект рабочих предельных калибров для контроля размеров гладких цилиндрических деталей состоит из проходного калибра ПР (им контролируется предельный размер, соответствующий максимуму материала проверяемого объекта, рис.6) и непроходного калибра НЕ (им контролируют предельный размер, соответствующий минимуму материала проверяемого объекта). С помощью предельных калибров определяют не числовое значение контролируемых параметров, а годность детали, т.е. выясняют, выходит ли контролируемый параметр за нижний или верхний предел, или находится между двумя доступными пределами.

Рисунок 6 - Схема для выбора номинальных размеров

предельных гладких калибров

Деталь считают годной, если проходной калибр (проходная сторона калибра) под действием собственного веса или усилия, примерно равного ему, проходит, а непроходной калибр (непроходная сторона) не проходит по контролируемой поверхности детали. В этом случае действительный размер детали находится между заданными предельными размерами. Если проходной калибр не проходит, деталь является исправимым браком; если непроходной калибр проходит, деталь является неисправимым браком, так как размер такого вала меньше наименьшего допускаемого предельного размера детали, а размер такого отверстия - больше наибольшего допускаемого предельного размера.

Для контроля калибров-скоб применяют контрольные калибры К-И, которые являются непроходными и служат для изъятия из эксплуатации вследствие износа проходных рабочих скоб.

Для контроля валов используют главным образом скобы. Наиболее распространены односторонние двухпредельные скобы (рис.7).

Рисунок 7 - Односторонние двухпредельные скобы

Допуски калибров

ГОСТ 24853-81 на гладкие калибры устанавливает следующие допуски на изготовление: Н - рабочих калибров (пробок) для отверстий (Нs - тех же калибров, но со сферическими измерительными поверхностями); Н1 - калибров (скоб) для валов; Нp - контрольных калибров для скоб (рис.8).

Для проходных калибров, которые в процессе контроля изнашиваются, кроме допуска на изготовление, предусматривается допуск на износ. Для размеров до 500 мм износ калибров ПР с допуском до IT8 включительно может выходить за границу поля допуска детали на величину Y для пробок и Y1 для скоб; для калибров ПР с допусками от IT9 до IT17 износ ограничивается проходным пределом, т.е. Y = 0 и Y1 = 0.

Для всех проходных калибров поля допусков Н (Hs) и Н1 сдвинуты внутрь поля допуска изделия на величину Z для калибров-пробок и Z1 для калибров-скоб.

Необходимые для выполнения расчетно-практической работы значения Z, Y, Z1, Y1, H, Hs, h2, Hp приведены в приложении 2.

Рисунок 8 - Схемы расположения полей допусков калибров:

а - для отверстия;

б - для вала

megaobuchalka.ru

Допуски и посадки.Измерительный инструмент

На главную

На современных заводах станки, автомобили, тракторы и другие машины изготовляются не единицами и даже не десятками и сотнями, а тысячами. При таких размерах производства очень важно, чтобы каждая деталь машины при сборке точно подходила к своему месту без какой-либо дополнительной слесарной пригонки. Не менее важно, чтобы любая деталь, поступающая на сборку, допускала замену ее другой одного с ней назначения без всякого ущерба для работы всей готовой машины. Детали, удовлетворяющие таким условиям, называют взаимозаменяемыми.

Взаимозаменяемость деталей — это свойство деталей занимать свои места в узлах и изделиях без всякого предварительного подбора или подгонки по месту и выполнять свои функции в соответствии с предписанными техническими условиями.

2. Сопряжение деталей

Две детали, подвижно или неподвижно соединяемые друг с другом, называют сопрягаемыми. Размер, по которому происходит соединение этих деталей, называют сопрягаемым размером. Размеры, по которым не происходит соединения деталей, называют свободными размерами. Примером сопрягаемых размеров может служить диаметр вала и соответствующий диаметр отверстия в шкиве; примером свободных размеров может служить наружный диаметр шкива.

Для получения взаимозаменяемости сопрягаемые размеры деталей должны быть точно выполнены. Однако такая обработка сложна и не всегда целесообразна. Поэтому техника нашла способ получать взаимозаменяемые детали при работе с приближенной точностью. Этот способ заключается в том, что для различных условий работы детали устанавливают допустимые отклонения ее размеров, при которых все же возможна безукоризненная работа детали в машине. Эти отклонения, рассчитанные для различных условий работы детали, построены в определенной системе, которая называется системой допусков.

3. Понятие о допусках

Характеристика размеров. Расчетный размер детали, проставляемый на чертеже, от которого отсчитываются отклонения, называется номинальным размером. Обычно номинальные размеры выражаются в целых миллиметрах.

Размер детали, фактически полученный при обработке, называется действительным размером.

Размеры, между которыми может колебаться действительный размер детали, называются предельными. Из них больший размер называется наибольшим предельным размером, а меньший — наименьшим предельным размером.

Отклонением называется разность между предельным и номинальным размерами детали. На чертеже отклонения обозначаются обычно числовыми величинами при номинальном размере, причем верхнее отклонение указывается выше, а нижнее — ниже.

Например, в размере номинальным размером является 30, а отклонениями будут +0,15 и —0,1.

Разность между наибольшим предельным и номинальным размерами называется верхним отклонением, а разность между наименьшим предельным и номинальным размерами — нижним отклонением. Например, размер вала равен . В этом случае наибольший предельный размер будет:

30 +0,15 = 30,15 мм;

верхнее отклонение составит

30,15 — 30,0 = 0,15 мм;

наименьший предельный размер будет:

30+0,1 = 30,1 мм;

нижнее отклонение составит

30,1 — 30,0 = 0,1 мм.

Допуск на изготовление. Разность между наибольшим и наименьшим предельными размерами называется допуском. Например, для размера вала допуск будет равен разности предельных размеров, т. е. 30,15 — 29,9 = 0,25 мм.

4. Зазоры и натяги

Если деталь с отверстием насадить на вал с диаметром , т. е. с диаметром при всех условиях меньше диаметра отверстия, то в соединении вала с отверстием обязательно получится зазор, как это показано на рис. 70. В этом случае посадка называется подвижной, так как вал сможет свободно вращаться в отверстии. Если же размер вала будет т. е. всегда больше размера отверстия (рис. 71), то при соединении вал потребуется запрессовать в отверстие и тогда в соединении получится натяг.

На основании изложенного можно сделать следующее заключение: зазором называют разность между действительными размерами отверстия и вала, когда отверстие больше вала; натягом называют разность между действительными размерами вала и отверстия, когда вал больше отверстия.

5. Посадки и классы точности

Посадки. Посадки разделяются на подвижные и неподвижные. Ниже приводим наиболее применяемые посадки, причем в скобках даются их сокращенные обозначения.

Классы точности. Из практики известно, что, например, детали сельскохозяйственных и дорожных машин без вреда для их работы могут быть изготовлены менее точно, чем детали токарных станков, автомобилей, измерительных приборов. В связи с этим в машиностроении детали разных машин изготовляются по десяти различным классам точности. Пять из них более точные: 1-й, 2-й, 2а, 3-й, За; два менее точные: 4-й и 5-й; три остальные — грубые: 7-й, 8-й и 9-й.

Чтобы знать, по какому классу точности нужно изготовить деталь, на чертежах рядом с буквой, обозначающей посадку, ставится цифра, указывающая класс точности. Например, С4 означает: скользящая посадка 4-го класса точности; Х3 — ходовая посадка 3-го класса точности; П — плотная посадка 2-го класса точности. Для всех посадок 2-го класса цифра 2 не ставится, так как этот класс точности применяется особенно широко.

6. Система отверстия и система вала

Различают две системы расположения допусков — систему отверстия и систему вала.

Система отверстия (рис. 72) характеризуется тем, что в ней для всех посадок одной и той же степени точности (одного класса), отнесенных к одному и тому же номинальному диаметру, отверстие имеет постоянные предельные отклонения, разнообразие же посадок получается за счет изменения предельных отклонений вала.

Система вала (рис. 73) характеризуется тем, что в ней для всех посадок одной и той же степени точности (одного класса), отнесенных к одному и тому же номинальному диаметру, вал имеет постоянные предельные отклонения, разнообразие же посадок в этой системе осуществляется за счет изменения предельных отклонений отверстия.

На чертежах систему отверстия обозначают буквой А, а систему вала — буквой В. Если отверстие изготовляется по системе отверстия, то у номинального размера ставят букву А с цифрой, соответствующей классу точности. Например, 30А3 означает, что отверстие должно быть обработано по системе отверстия 3-го класса точности, а 30А — по системе отверстия 2-го класса точности. Если же отверстие обрабатывается по системе вала, то у номинального размера ставят обозначение посадки и соответствующего класса точности. Например, отверстие 30С4 означает, что отверстие нужно обработать с предельными отклонениями по системе вала, по скользящей посадке 4-го класса точности. В том случае, когда вал изготовляется по системе вала, ставят букву В и соответствующий класс точности. Например, 30В3 будет означать обработку вала по системе вала 3-го класса точности, а 30В — по системе вала 2-го класса точности.

В машиностроении систему отверстия применяют чаще, чем систему вала, так как это сопряжено с меньшими расходами на инструмент и оснастку. Например, для обработки отверстия данного номинального диаметра при системе отверстия для всех посадок одного класса требуется только одна развертка и для измерения отверстия — одна /предельная пробка, а при системе вала для каждой посадки в пределах одного класса нужна отдельная развертка и отдельная предельная пробка.

7. Таблицы отклонений

Для определения и назначения классов точности, посадок и величины допусков пользуются специальными справочными таблицами. Так как допустимые отклонения являются обычно очень малыми величинами, то, чтобы не писать лишних нулей, в таблицах допусков их обозначают в тысячных долях миллиметра, называемых микронами; один микрон равен 0,001 мм.

В качестве примера приведена таблица 2-го класса точности для системы отверстия (табл. 7).

В первой графе таблицы даны номинальные диаметры, во второй графе — отклонения отверстия в микронах. В остальных графах приводятся различные посадки с соответствующими им отклонениями. Знак плюс показывает, что отклонение прибавляется к номинальному размеру, а минус — что отклонение вычитается из номинального размера.

В качестве примера определим посадку движения в системе отверстия 2-го класса точности для соединения вала с отверстием номинального диаметра 70 мм.

Номинальный диаметр 70 лежит между размерами 50—80, помещенными в первой графе табл. 7. Во второй графе находим соответствующие отклонения отверстия . Следовательно, наибольший предельный размер отверстия будет 70,030 мм, а наименьший 70 мм, так как нижнее отклонение равно нулю.

В графе «Посадка движения» против размера от 50 до 80 указано отклонение для вала Следовательно, наибольший предельный размер вала 70-0,012 = 69,988 мм, а наименьший предельный размер 70-0,032 = 69,968 мм.

Таблица 7

Предельные отклонения отверстия и вала для системы отверстия по 2-му классу точности(по ОСТ 1012). Размеры в микронах (1 мк = 0,001 мм)

Контрольные вопросы 1. Что называется взаимозаменяемостью деталей в машиностроении? 2. Для чего назначают допустимые отклонения размеров деталей? 3. Что такое номинальный, предельный и действительный размеры? 4. Может ли предельный размер равняться номинальному? 5. Что называется допуском и как определить допуск? 6. Что называется верхним и нижним отклонениями? 7. Что называется зазором и натягом? Для чего предусматриваются в соединении двух деталей зазор и натяг? 8. Какие бывают посадки и как их обозначают на чертежах? 9. Перечислите классы точности. 10. Сколько посадок имеет 2-й класс точности? 11. Чем отличается система отверстия от системы вала? 12. Будут ли изменяться предельные отклонения отверстия для различных посадок в системе отверстия? 13. Будут ли изменяться предельные отклонения вала для различных посадок в системе отверстия? 14. Почему в машиностроении система отверстия применяется чаще, чем система вала? 15. Как проставляются на чертежах условные обозначения отклонений в размерах отверстия, если детали выполняются в системе отверстия? 16. В каких единицах указаны отклонения в таблицах?

17. Определите, пользуясь табл. 7, отклонения и допуск на изготовление вала с номинальным диаметром 50 мм; 75 мм; 90 мм.

Для измерения и проверки размеров деталей токарю приходится пользоваться различными измерительными инструментами. Для не очень точных измерений пользуются измерительными линейками, кронциркулями и нутромерами, а для более точных — штангенциркулями, микрометрами, калибрами и т. д.

1. Измерительная линейка. Кронциркуль. Нутромер

Измерительная линейка (рис. 74) служит для измерения длины деталей и уступов на них. Наиболее распространены стальные линейки длиной от 150 до 300 мм с миллиметровыми делениями.

Длину измеряют, непосредственно прикладывая линейку к обрабатываемой детали. Начало делений или нулевой штрих совмещают с одним из концов измеряемой детали и затем отсчитывают штрих, на который приходится второй конец детали.

Возможная точность измерений с помощью линейки 0,25—0,5 мм.

Кронциркуль (рис. 75, а) — наиболее простой инструмент для грубых измерений наружных размеров обрабатываемых деталей. Кронциркуль состоит из двух изогнутых ножек, которые сидят на одной оси и могут вокруг нее вращаться. Разведя ножки кронциркуля несколько больше измеряемого размера, легким постукиванием об измеряемую деталь или какой-нибудь твердый предмет сдвигают их так, чтобы они вплотную касались наружных поверхностей измеряемой детали. Способ переноса размера с измеряемой детали на измерительную линейку показан на рис. 76.

На рис. 75, 6 показан пружинный кронциркуль. Его устанавливают на размер при помощи винта и гайки с мелкой резьбой.

Пружинный кронциркуль несколько удобнее простого, так как сохраняет установленный размер.

Нутромер. Для грубых измерений внутренних размеров служит нутромер, изображенный на рис. 77, а, а также пружинный нутромер (рис. 77, б). Устройство нутромера сходное устройством кронциркуля; сходно также и измерение этими инструментами. Вместо нутромера можно пользоваться кронциркулем, заводя его ножки одна за другую, как показано на рис. 77, в.

Точность измерения кронциркулем и нутромером можно довести до 0,25 мм.

2. Штангенциркуль с точностью отсчета 0,1 мм

Точность измерения измерительной линейкой, кронциркулем, нутромером, как уже указывалось, не превышает 0,25 мм. Более точным инструментом является штангенциркуль (рис. 78), которым можно измерять как наружные, так и внутренние размеры обрабатываемых деталей. При работе на токарном станке штангенциркуль используется также для измерения глубины выточки или уступа.

Штангенциркуль состоит из стальной штанги (линейки) 5 с делениями и губок 1, 2, 3 и 8. Губки 1 и 2 составляют одно целое с линейкой, а губки 8 и 3 — одно целое с рамкой 7, скользящей по линейке. С помощью винта 4 можно закрепить рамку на линейке в любом положении.

Для измерения наружных поверхностей служат губки 1 и 8, для измерения внутренних поверхностей—губки 2 и 3, а для измерения глубины выточки —-стержень 6, связанный с рамкой 7.

На рамке 7 имеется шкала со штрихами для отсчета дробных долей миллиметра, называемая нониусом. Нониус позволяет производить измерения с точностью 0,1 мм (десятичный нониус), а в более точных штангенциркулях — с точностью 0,05 и 0,02 мм.

Устройство нониуса. Рассмотрим, каким образом производится отсчет по нониусу у штангенциркуля с точностью 0,1 мм. Шкала нониуса (рис. 79) разделена на десять равных частей и занимает длину, равную девяти делениям шкалы линейки, или 9 мм. Следовательно, одно деление нониуса составляет 0,9 мм, т. е. оно короче каждого деления линейки на 0,1 мм.

Если сомкнуть вплотную губки штангенциркуля, то нулевой штрих нониуса будет точно совпадать с нулевым штрихом линейки. Остальные штрихи нониуса, кроме последнего, такого совпадения иметь не будут: первый штрих нониуса не дойдет до первого штриха линейки на 0,1 мм; второй штрих нониуса не дойдет до второго штриха линейки на 0,2 мм; третий штрих нониуса не дойдет до третьего штриха линейки на 0,3 мм и т. д. Десятый штрих нониуса будет точно совпадать с девятым штрихом линейки.

Если сдвинуть рамку таким образом, чтобы первый штрих нониуса (не считая нулевого) совпал с первым штрихом линейки, то между губками штангенциркуля получится зазор, равный 0,1 мм. При совпадении второго штриха нониуса со вторым штрихом линейки зазор между губками уже составит 0,2 мм, при совпадении третьего штриха нониуса с третьим штрихом линейки зазор будет 0,3 мм и т. д. Следовательно, тот штрих нониуса, который точно совпадет с каким-либо штрихом линейки, показывает число десятых долей миллиметра.

При измерении штангенциркулем сначала отсчитывают целое число миллиметров, о чем судят по положению, занимаемому нулевым штрихом нониуса, а затем смотрят, с каким штрихом нониуса совпал штрих измерительной линейки, и определяют десятые доли миллиметра.

На рис. 79, б показано положение нониуса при измерении детали диаметром 6,5 мм. Действительно, нулевой штрих нониуса находится между шестым и седьмым штрихами измерительной линейки, и, следовательно, диаметр детали равен 6 мм плюс показания нониуса. Далее мы видим, что с одним из штрихов линейки совпал пятый штрих нониуса, что соответствует 0,5 мм, поэтому диаметр детали составит 6 + 0,5 = 6,5 мм.

3. Штангенглубиномер

Для измерения глубины выточек и канавок, а также для определения правильного положения уступов по длине валика служит специальный инструмент, называемый штангенглубиномером (рис. 80). Устройство штангенглубиномера сходно с устройством штангенциркуля. Линейка 1 свободно перемещается в рамке 2 и закрепляется в ней в нужном положении при помощи винта 4. Линейка 1 имеет миллиметровую шкалу, по которой при помощи нониуса 3, имеющегося на рамке 2, определяется глубина выточки или канавки, как показано на рис. 80. Отсчет по нониусу ведется так же, как и при измерении штангенциркулем.

4. Прецизионный штангенциркуль

Для работ, выполняемых с большей точностью, чем до сих пор рассмотренные, применяют прецизионный (т. е. точный) штангенциркуль.

На рис. 81 изображен прецизионный штангенциркуль завода им. Воскова, имеющий измерительную линейку длиной 300 мм и нониус.

Длина шкалы нониуса (рис. 82, а) равна 49 делениям измерительной линейки, что составляет 49 мм. Эти 49 мм точно разделены на 50 частей, каждая из которых равна 0,98 мм. Так как одно деление измерительной линейки равно 1 мм, а одно деление нониуса равно 0,98 мм, то можно сказать, что каждое деление нониуса короче каждого деления измерительной линейки на 1,00—0,98 = = 0,02 мм. Эта величина 0,02 мм обозначает ту точность, которую может обеспечить нониус рассматриваемого прецизионного штангенциркуля при измерении деталей.

При измерении прецизионным штангенциркулем к количеству целых миллиметров, которое пройдено нулевым штрихом нониуса, надо прибавлять столько сотых долей миллиметра, сколько покажет штрих нониуса, совпавший со штрихом измерительной линейки. Например (см. рис. 82, б), по линейке штангенциркуля нулевой штрих нониуса прошел 12 мм, а его 12-й штрих совпал с одним из штрихов измерительной линейки. Так как совпадение 12-го штриха нониуса означает 0,02 х 12 = 0,24 мм, то измеряемый размер равен 12,0 + 0,24 = 12,24 мм.

На рис. 83 изображен прецизионный штангенциркуль завода «Калибр» с точностью отсчета 0,05 мм.

Длина нониусной шкалы этого штангенциркуля, равная 39 мм, разделена на 20 равных частей, каждая из которых принимается за пять. Поэтому против пятого штриха нониуса стоит цифра 25, против десятого — 50 и т. д. Длина каждого деления нониуса равна

Из рис. 83 видно, что при сомкнутых вплотную губках штангенциркуля только нулевой и последний штрихи нониуса совпадают со штрихами линейки; остальные же штрихи нониуса такого совпадения иметь не будут.

Если сдвинуть рамку 3 до совпадения первого штриха нониуса со вторым штрихом линейки, то между измерительными поверхностями губок штангенциркуля получится зазор, равный 2—1,95 = = 0,05 мм. При совпадении второго штриха нониуса с четвертым штрихом линейки зазор между измерительными поверхностями губок будет равен 4—2 X 1,95 = 4 — 3,9 = 0,1 мм. При совпадении третьего штриха нониуса со следующим штрихом линейки зазор составит уже 0,15 мм.

Отсчет на данном штангенциркуле ведется подобно изложенному выше.

Прецизионной штангенциркуль (рис. 81 и 83) состоит из линейки 1 с губками 6 и 7. На линейке нанесены деления. По линейке 1 может передвигаться рамка 3 с губками 5 и 8. К рамке привинчен нониус 4. Для грубых измерений передвигают рамку 3 по линейке 1 и после закрепления винтом 9 производят отсчет. Для точных измерений пользуются микрометрической подачей рамки 3, состоящей из винта и гайки 2 и зажима 10. Зажав винт 10, вращением гайки 2 подают микрометрическим винтом рамку 3 до плотного соприкосновения губки 8 или 5 с измеряемой деталью, после чего производят отсчет.

5. Микрометр

Микрометр (рис. 84) применяется для точного измерения диаметра, длины и толщины обрабатываемой детали и дает точность отсчета в 0,01 мм. Измеряемая деталь располагается между неподвижной пяткой 2 и микрометрическим винтом (шпинделем) 3. Вращением барабана 6 шпиндель удаляется или приближается к пятке.

Для того чтобы при вращении барабана не могло произойти слишком сильного нажатия шпинделем на измеряемую деталь, имеется предохранительная головка 7 с трещоткой. Вращая головку 7, мы будем выдвигать шпиндель 3 и поджимать деталь к пятке 2. Когда это поджатие окажется достаточным, при дальнейшем вращении головки ее храповичок будет проскальзывать и будет слышен звук трещотки. После этого прекращают вращение головки, закрепляют при помощи поворота зажимного кольца (стопора) 4 полученное раскрытие микрометра и производят отсчет.

Для производства отсчетов на стебле 5, составляющем одно целое со скобой 1 микрометра, нанесена шкала с миллиметровыми делениями, разделенными пополам. Барабан 6 имеет скошенную фаску, разделенную по окружности на 50 равных частей. Штрихи от 0 до 50 через каждые пять делений отмечены цифрами. При нулевом положении, т. е. при соприкосновении пятки со шпинделем, нулевой штрих на фаске барабана 6 совпадает с нулевым штрихом на стебле 5.

Механизм микрометра устроен таким образом, что при полном обороте барабана шпиндель 3 переместится на 0,5 мм. Следовательно, если повернуть барабан не на полный оборот, т. е. не на 50 делений, а на одно деление, или часть оборота, то шпиндель переместится на Это и есть точность отсчета микрометра. При отсчетах сначала смотрят, сколько целых миллиметров или целых с половиной миллиметров открыл барабан на стебле, затем к этому прибавляют число сотых долей миллиметра, которое совпало с линией на стебле.

На рис. 84 справа показан размер, снятый микрометром при измерении детали; необходимо сделать отсчет. Барабан открыл 16 целых делений (половинка не открыта) на шкале стебля. С линией стебля совпал седьмой штрих фаски; следовательно, будем иметь еще 0,07 мм. Полный отсчет равен 16 + 0,07 = 16,07 мм.

На рис. 85 показано несколько измерений микрометром.

Следует помнить, что микрометр — точный инструмент, требующий бережного отношения; поэтому, когда шпиндель слегка коснулся поверхности измеряемой детали, не следует больше вращать барабан, а для дальнейшего перемещения шпинделя вращать головку 7 (рис. 84), пока не последует звук трещотки.

6. Нутромеры

Нутромеры (штихмасы) служат для точных измерений внутренних размеров деталей. Существуют нутромеры постоянные и раздвижные.

Постоянный, или жесткий, нутромер (рис. 86) представляет собой металлический стержень с измерительными концами, имеющими шаровую поверхность. Расстояние между ними равно диаметру измеряемого отверстия. Чтобы исключить влияние тепла руки, держащей нутромер, на его фактический размер, нутромер снабжают державкой (рукояткой).

Для измерения внутренних размеров с точностью до 0,01 мм применяются микрометрические нутромеры. Устройство их сходно с устройством микрометра для наружных измерений.

Головка микрометрического нутромера (рис. 87) состоит из гильзы 3 и барабана 4, соединенного с микрометрическим винтом; шаг винта 0,5 мм, ход 13 мм. В гильзе помещается стопор 2 и пятка/с измерительной поверхностью. Удерживая гильзу и вращая барабан, можно изменять расстояние между измерительными поверхностями нутромера. Отсчеты производят, как у микрометра.

Пределы измерений головки штихмаса — от 50 до 63 мм. Для измерения больших диаметров (до 1500 мм) на головку навинчивают удлинители 5.

7. Предельные измерительные инструменты

При серийном изготовлении деталей по допускам применение универсальных измерительных инструментов (штангенциркуль, микрометр, микрометрический нутромер) нецелесообразно, так как измерение этими инструментами является сравнительно сложной и длительной операцией. Точность их часто недостаточна, и, кроме того, результат измерения зависит от умения работника.

Для проверки, находятся ли размеры деталей в точно установленных пределах, пользуются специальным инструментом — предельными калибрами. Калибры для проверки валов называются скобами, а для проверки отверстий — пробками.

Измерение предельными скобами. Двухсторонняя предельная скоба (рис. 88) имеет две пары измерительных щек. Расстояние между щеками одной стороны равно наименьшему предельному размеру, а другой — наибольшему предельному размеру детали. Если измеряемый вал проходит в большую сторону скобы, следовательно, его размер не превышает допустимого, а если нет, — значит размер его слишком велик. Если же вал проходит также и в меньшую сторону скобы, то это значит, что его диаметр слишком мал, т. е. меньше допустимого. Такой вал является браком.

Сторона скобы с меньшим размером называется непроходной (клеймится «НЕ»), противоположная сторона с большим размером — проходной (клеймится «ПР»). Вал признается годным, если скоба, опускаемая на него проходной стороной, скользит вниз под влиянием своего веса (рис. 88), а непроходная сторона не находит на вал.

Для измерения валов большого диаметра вместо двухсторонних скоб применяют односторонние (рис. 89), у которых обе пары измерительных поверхностей лежат одна за другой. Передними измерительными поверхностями такой скобы проверяют наибольший допускаемый диаметр детали, а задними — наименьший. Эти скобы имеют меньший вес и значительно ускоряют процесс контроля, так как для измерения достаточно один раз наложить скобу.

На рис. 90 показана регулируемая предельная скоба, у которой при износе можно путем перестановки измерительных штифтов восстановить правильные размеры. Кроме того, такую скобу можно отрегулировать для заданных размеров и таким образом небольшим набором скоб проверить большое количество размеров.

Для перестановки на новый размер нужно ослабить стопорные винты 1 на левой ножке, соответственно передвинуть измерительные штифты 2 и 3 и снова закрепить винты 1.

Широкое распространение имеют плоские предельные скобы (рис. 91), изготовляемые из листовой стали.

Измерение предельными пробками. Цилиндрический предельный калибр-пробка (рис. 92) состоит из проходной пробки 1, непроходной пробки 3 и рукоятки 2. Проходная пробка («ПР») имеет диаметр, равный наименьшему допустимому размеру отверстия, а непроходная пробка («НЕ») — наибольшему. Если пробка «ПР» проходит, а пробка «НЕ» не проходит, то диаметр отверстия больше наименьшего предельного и меньше наибольшего, т. е. лежит в допустимых пределах. Проходная пробка имеет большую длину, чем непроходная.

На рис. 93 показано измерение отверстия предельной пробкой на токарном станке. Проходная сторона должна легко проходить сквозь отверстие. Если же и непроходная сторона входит в отверстие, то деталь бракуют.

Цилиндрические калибры-пробки для больших диаметров неудобны вследствие их большого веса. В этих случаях пользуются двумя плоскими калибрами-пробками (рис. 94), из которых один имеет размер, равный наибольшему, а второй — наименьшему допускаемому. Проходная сторона имеет, большую ширину, чем пепроходная.

На рис. 95 показана регулируемая предельная пробка. Ее можно отрегулировать для нескольких размеров так же, как регулируемую предельную скобу, или восстановить правильный размер изношенных измерительных поверхностей.

8. Рейсмасы и индикаторы

Рейсмас. Для точной проверки правильности установки детали в четырехкулачковом патроне, на угольнике и т. п. применяют рейсмас.

С помощью рейсмаса можно производить также разметку центровых отверстий в торцах детали.

Простейший рейсмас показан на рис. 96, а. Он состоит из массивной плитки с точно обработанной нижней плоскостью и стержня, по которому передвигается ползушка с иглой-чертилкой.

Рейсмас более совершенной конструкции, показан на рис. 96, б. Игла 3 рейсмаса при помощи шарнира 1 и хомута 4 может быть подведена острием к проверяемой поверхности. Точная установка осуществляется винтом 2.

Индикатор. Для контроля точности обработки на металлорежущих станках, проверки обработанной детали на овальность, конусность, для проверки точности самого станка применяют индикатор.

Индикатор (рис. 97) имеет металлический корпус 6 в форме часов, в котором заключен механизм прибора. Через корпус индикатора проходит стержень 3 с выступающим наружу наконечником, всегда находящийся под воздействием пружины. Если нажать на стержень снизу вверх, он переместится в осевом направлении и при этом повернет стрелку 5, которая передвинется по циферблату, имеющему шкалу в 100 делений, каждое из которых соответствует перемещению стержня на 1/100 мм. При перемещении стержня на 1 мм стрелка 5 сделает по циферблату полный оборот. Для отсчета целых оборотов служит стрелка 4.

При измерениях индикатор всегда должен быть жестко закреплен относительно исходной измерительной поверхности. На рис. 97, а изображена универсальная стойка для крепления индикатора. Индикатор 6 при помощи стержней 2 и 1 муфт 7 и 8 закрепляют на вертикальном стержне 9. Стержень 9 укрепляется в пазу 11 призмы 12 гайкой 10 с накаткой.

Для измерения отклонения детали от заданного размера подводят к ней наконечник индикатора до соприкосновения с измеряемой поверхностью и замечают начальное показание стрелок 5 и 4 (см. рис. 97, б) на циферблате. Затем перемещают индикатор относительно измеряемой поверхности или измеряемую поверхность относительно индикатора.

Отклонение стрелки 5 от ее начального положения покажет величину выпуклости (впадины) в сотых долях миллиметра, а отклонение стрелки 4—в целых миллиметрах.

На рис. 98 показан пример использования индикатора для проверки совпадения центров передней и задней бабок токарного станка. Для более точной проверки следует установить между центрами точный шлифованный валик, а в резцедержателе — индикатор. Подведя кнопку индикатора к поверхности валика справа и заметив показание стрелки индикатора, перемещают вручную суппорт с индикатором вдоль валика. Разность отклонений стрелки индикатора в крайних положениях валика покажет, на какую величину следует передвинуть в поперечном направлении корпус задней бабки.

С помощью индикатора можно также проверить торцовую поверхность детали, обработанной на станке. Индикатор закрепляют в резцедержателе взамен резца и перемещают вместе с резцедержателем в поперечном направлении так, чтобы пуговка индикатора касалась проверяемой поверхности. Отклонение стрелки индикатора покажет величину биения торцовой плоскости.

Контрольные вопросы 1. Из каких деталей состоит штангенциркуль с точностью 0,1 мм? 2. Как устроен нониус штангенциркуля с точностью 0,1 мм? 3. Установите на штангенциркуле размеры: 25,6 мм; 30,8 мм; 45,9 мм. 4. Сколько делений имеет нониус прецизионного штангенциркуля с точностью 0,05 мм? То же, с точностью 0,02 мм? Чему равняется длина одного деления нониуса? Как прочитать показания нониуса? 5. Установите по прецизионному штангенциркулю размеры: 35,75 мм; 50,05 мм; 60,55 мм; 75 мм. 6. Из каких деталей состоит микрометр? 7. Чему равняется шаг винта микрометра? 8. Как производят отсчет измерения по микрометру? 9. Установите по микрометру размеры: 15,45 мм; 30,5 мм; 50,55 мм. 10. В каких случаях применяют нутромеры? 11. Для чего применяют предельные калибры? 12. Каково назначение проходной и непроходной сторон предельных калибров? 13. Какие конструкции предельных скоб вам известны? 14. Как проверять правильность размера предельной пробкой? Предельной скобой? 15. Для чего служит индикатор? Как им пользоваться?

16. Как устроен рейсмас и для чего его применяют?

предыдущая страница оглавление следующая страница

tehinfor.ru


Смотрите также

НАС УЖЕ 77 321

Подпишись на обновления сайта! Получай статьи на почту: