3D сады


Проект по химии выращивание кристаллов


Проектная работа по теме: "Выращивание кристаллов в домашних условиях"

Научно-практическая конференция

Секция: окружающий мир

ВЫРАЩИВАНИЕ КРИСТАЛЛОВ

В ДОМАШНИХ УСЛОВИЯХ

Абдуллина Диляра

МБОУ «СОШ № 25», 3 А класс,

г. Набережные Челны

Научный руководитель:

Глазкова О.Н., учитель начальных классов

Набережные Челны

2015 г.

СОДЕРЖАНИЕ:

  1. Введение___________________________________________ стр. 3

§ 1. Что такое кристаллы. Разновидности кристаллов ______ стр. 4

§ 3. Применение кристаллов ___________________________ стр. 5

Этап 1. Приготовление раствора _______________________ стр. 6

Этап 2. Наблюдение за ростом кристаллов _______________ стр. 7

Этап 3. Сравнение полученных кристаллов ______________ стр. 9

  1. Заключение ________________________________________ стр. 10

  1. Источники информации ______________________________ стр. 11

2

Каждый человек в своей жизни хотя бы один раз любовался красивым блеском кристаллов. Они завораживают своими правильными формами, большим разнообразием расцветок. Человечество с древних времен изучает свойства кристаллов. Кристаллы, как и живые существа, могут зарождаться, расти, стареть и разрушаться.

Я заинтересовалась кристаллами, когда мне родители впервые подарили журнал «Минералы. Сокровища Земли». Мне нравилось рассматривать кристаллы, которые идут в наборе с журналом, читать о разных минералах. Я решила попробовать вырастить кристалл в домашних условиях.

Актуальность работы: кристаллы играют большую роль в жизни человека. Их используют в качестве украшений, элементов декора, в науке и технике. Зная структуру кристаллов, можно управлять их свойствами.

Гипотеза: некоторые кристаллы легко выращиваются в домашних условиях.

Предмет исследования: кристаллы.

Объект исследования: рост кристаллов.

Цель проекта: научиться выращивать кристаллы медного купороса и железного купороса в домашних условиях.

Задачи проекта:

  1. Изучить происхождение кристаллов, их разновидности.

  2. Выяснить, где и как применяются кристаллы.

  3. Определить способ выращивания кристаллов в домашних условиях.

  4. Подобрать дома доступное оборудование и сырье для выращивания кристаллов.

  5. Познакомиться с мерами безопасности при проведении опытов.

  6. Вырастить кристаллы медного купороса и железного купороса.

  7. Сравнить полученные кристаллы.

3

§ 1. Что такое кристаллы. Разновидности кристаллов.

Кристаллы – это твердые тела, которые имеют упорядоченное, симметрическое строение. В переводе с греческого слово «кристалл» означает «прозрачный лед». Вначале так называли горный хрусталь. Горный хрусталь принимали за лед, который так сильно замерз, что уже не тает. Главной особенностью кристалла считали его прозрачность, поэтому позднее так стали называть все прозрачные твердые тела. Сейчас словом «кристалл» называют все твердые тела с упорядоченной внутренней структурой, которая часто проявляется в виде правильной геометрической формы тела.

Все кристаллы делятся на две большие группы: идеальные и реальные. Идеальные кристаллы – математическая модель, которой пользуются ученные, чтобы описать свойства настоящих кристаллов. Реальные кристаллы – те, с которыми мы сталкиваемся в жизни. Они имеют различные примеси, шероховатые поверхности, могут иметь неправильную форму.

Так же кристаллы делят на группы по их происхождению: природные (естественные) и искусственные (выращенные человеком). Природные кристаллы вырастают в недрах планеты в естественных для роста условиях. Искусственные кристаллы выращиваются в лабораториях или домашних условиях. Например, кристаллы поваренной соли можно вырастить дома. Кристаллы рубина (фото 1) могут быть выращены как самой природой, так и в лаборатории людьми. Но существуют кристаллы, например парателлурит (фото 2), которые не вырастают в природе, их можно получить только в лабораторных условиях.

Фото 1. Фото 2.

Кристалл рубина Кристалл парателлурита

4

§ 2. Применение кристаллов.

Применение кристаллов в науке и технике очень разнообразно. Приведу только несколько примеров. Самый твердый и редкий минерал – алмаз (фото 3) – используется как украшение. Так же из-за его исключительной твердости многие режущие инструменты покрывают смесью алмазного порошка и клейкого вещества. Алмазным порошком шлифуют и полируют твердые камни, закаленную сталь, твердые и сверхтвердые сплавы.

Рубин и сапфир (фото 4) относятся к самым красивым и дорогим из драгоценных камней. Но у них есть и другие применения. Все часы работают на искусственных рубинах. Рубины используют в лазерах, так как его кристалл усиливает свет. Сапфир прозрачен, поэтому из него делают пластины для оптических приборов.

Кристаллы используются в устройствах для записи и воспроизведения звука. Кристаллы кремния и германия входят в состав полупроводниковых диодов, которые есть в каждом компьютере и мобильном телефоне.

Так же в технике нашел свое применение материал поляроид (фото 5) – тонкая прозрачная пленка, заполненная крохотными игольчатыми кристаллами. Поляроидные пленки используют в поляроидных очках, так как они гасят блики отраженного света. Это важно для полярников, которым приходится смотреть на ослепительный снег, а так же для водителей автотранспорта.

Фото 3 Фото 4 Фото 5

Алмаз Сапфир Поляроидные пленки

5

Этап 1. Приготовление раствора.

Для выращивания кристаллов в домашних условиях, мы с мамой решили взять соли медного купороса и железного купороса. Соль купили в магазине садово-огородного инвентаря, где она продается как средство по борьбе с плесенью.

ВАЖНО! Нужно помнить, что это химические реактивы, поэтому дети должны работать с ними только под наблюдением взрослых!

Сначала надо приготовить насыщенный раствор соли. Для этого надо в банку залить воду, затем небольшими порциями добавлять соль и размешивать ее до полного растворения. На 300 мл воды положили 100 г медного купороса и 200 г железного купороса (фото 6). После этого я приготовила «затравку» - к маленьким гайкам привязала нитку и подвесила их на карандаши.

Фото 6

Приготовление раствора

6

Этап 2. Наблюдение за ростом кристаллов.

Через 2 часа после приготовления раствора на гайках и нитке появились тоненькие кристаллики. В банке с железным купоросом они были заметнее (фото 7), чем в банке с медным купоросом (фото 8).

Фото 7 Фото 8

Через 2 дня увидела, что медный купорос выпал в осадок на дно банки (фото 9), а в банке с железным купоросом вырос небольшой кристалл (фото 10). Когда мы попробовали вытащить кристалл медного купороса со дна банки, он раскололся на несколько частей.

Фото 9 Фото 10

7

Тогда мы решили добавить в растворы еще по 200 г соли. Затем в небольшую посуду налили воду, поставили на огонь и в воду поставили банку с солью. Соль постоянно помешивали, чтобы она полностью растворилась (фото 11).

Фото 11

Когда вся соль растворилась, раствор в каждой банке оказался горячим. Через 2 часа я увидела, что в банке с железным купоросом появился небольшой кристалл (фото 12), а в банке с медным купоросом вырос кристалл больших размеров (фото 13).

Фото 12 Фото 13

8

На следующее утро я вылила раствор из банок, так как кристаллы выросли настолько, что приросли ко дну банок (фото 14,15).

Фото 14 Фото 15

Кристалл медного купороса Кристалл железного купороса

Этап 3. Сравнение полученных кристаллов.

Я рассмотрела кристаллы медного и железного купороса и увидела следующее:

  1. Кристаллы имеют разный цвет: у медного купороса – насыщенный синий, а у железного купороса – светло-зеленый.

  2. Они имеют разную форму: грани медного купороса похожи на ромбы, а грани железного купороса больше похожи на параллелограммы.

  3. Рост кристаллов произошел по-разному: кристалл медного купороса вырос больше в длину вдоль нити, а кристалл железного купороса вырос больше в ширину.

  4. Кристаллы хрупкие, так как при попытке вытащить кристаллы из банки, они надломились.

9

На основании проделанной работы я сделала следующие выводы:

  1. Кристаллы разных веществ отличаются друг от друга цветом и формой.

  2. Разные кристаллы имеют разные направление роста и скорость роста.

  3. Кристаллы лучше растут в сильно насыщенном растворе соли.

  4. Рост кристаллов сильно зависит от температуры: чем выше температура, тем быстрее растут кристаллы.

  5. Кристаллы медного и железного купороса хрупкие, при работе с ними надо быть аккуратной.

Результаты проекта:

  1. Я училась работать с источниками информации из Интернета.

  2. Освоила два способа выращивания кристаллов.

  3. В течении нескольких дней наблюдала рост кристаллов.

  4. Рассказала одноклассникам, как можно вырастить кристаллы в домашних условиях на уроке окружающего мира по теме «Вмире камней».

10

11

infourok.ru

Проектная работа на тему: «Выращивание кристаллов»

муниципальное бюджетное общеобразовательное учреждение

«Верхнедеревенская средняя общеобразовательная школа»

Льговского района Курской области

Проектная работа

на тему:

«Выращивание кристаллов»

Выполнили: ученик 8 класса

Будников С.

Руководитель: Белых О.В.

с. Вышние Деревеньки, 2016 г

Содержание

Введение __________________________________________________________________2-3

1 Теория кристаллов_________________________________________________________5-6

1.1 Что такое кристалл?________________________________________________________5

1.2 Происхождение слова «кристалл»___________________________________________5-6

1.3.Структура кристалла_______________________________________________________________6

2 Образование кристаллов___________________________________________________7-11

2.1 Образование кристаллов в природе__________________________________________7-8

2.2 Выращивание кристаллов в промышленности_________________________________8-9

3. Основные свойства кристаллов____________________________________________10-11

II. Практическая часть______________________________________________________12-13

Заключение_________________________________________________________________14

Список литературы___________________________________________________________15

Приложения № 1_____________________________________________________________16

Приложения № 2_____________________________________________________________17

Приложения № 3__________________________________________________________18-20

Приложения № 4__________________________________________________________21-23

Введение

Кристаллы окружают нас повсюду. Кто не рассматривал песчинки на речном берегу или не любовался снежинками? И морозные узоры на стеклах окон и иней, украшающий зимой голые ветки деревьев. В земле иногда находят камни такой формы, как будто их кто-то тщательно выпиливал, шлифовал, полировал. Правильность и совершенство формы этих камней, безукоризненная поверхность - поражают. Трудно поверить, что такие многогранники образовались сами без помощи человека. Вот эти-то камни с природной, то есть не сделанной руками человека, правильной, многогранной формой и называются кристаллами.

Твердые тела, из которых строят дома, делают станки, вещества, которые мы употребляем в быту,- почти все они относятся к кристаллам.

Представление древних о кристаллах было похоже на легенды. Верили, что хрусталь образуется изо льда, а алмаз – из хрусталя. Кристаллы наделялись множеством таинственных свойств: исцелять от болезней, предохранять от яда, влиять на судьбу человека…

Многие кристаллы идеально чисты и прозрачны, как вода. Недаром существуют выражения: «прозрачный, как кристалл», «кристально чистый». Слово «кристалл» происходит от греческого «крюсталлос», то есть «лед». Полагали, что лед, находясь длительное время в горах, на сильном морозе, окаменевает и теряет способность таять.

Актуальность работы: работа интересная и познавательная. Кристаллы играли и играют до сих пор немаловажную роль в жизни человека. Они обладают оптическими и механическими свойствами, именно поэтому первые линзы, в том числе и для очков, изготавливались из них. Кристаллы до сих пор применяются для изготовления призм и линз оптических приборов. Кристаллы сыграли важную роль во многих технических новинках XX века.

Кроме того, кристаллы можно выращивать из раствора. Это удивительное свойство кристаллических тел!

Цель работы: провести исследование по выращиванию кристаллов поваренной соли и медного купороса в домашних условиях.

Гипотеза исследования: я предположил, что кристаллы могут появляться при создании определенных условий; значит, если изменить условия кристаллизации и растворить различные вещества, то можно получить кристаллы разной формы и цвета в домашних условиях.

Объектом исследования являются кристаллы.

Предметом исследования–процесс кристаллизации.

Задачи исследования:

  1. Проанализировать текстовый и иллюстративный материал по данной теме.

  2. Изучить условия образования кристаллов, их формы, цвета.

  3. Выполнить опытно-экспериментальную работу по изученным методикам.

  4. Проанализировать полученные результаты.

Методы исследования:

  • Накопление теоретического материала.

  • Проведение опытно-экспериментальной деятельности с целью получения кристаллов из поваренной соли и медного купороса.

  • Анализ полученных результатов исследования.

1 Теория кристаллов

1.1 Что такое кристалл?

Кристалл – это твердое состояние вещества. Он имеет определенную форму и определенное количество граней вследствие расположения своих атомов. Все кристаллы одного вещества имеют одинаковую форму, хоть и могут отличаться размерами.

В природе существуют сотни веществ, образующих кристаллы. Вода – одно из самых распространенных из них. Замерзающая вода превращается в кристаллы льда или снежинки.

Вы, конечно, обращали внимание на бесконечное разнообразие снежинок. Еще в 17 веке знаменитый астроном Иоганн Кеплер написал трактат «О шестиугольных снежинках», а спустя три столетия были изданы альбомы, в которых представлены коллекции увеличенных фотографий тысяч снежинок, причем ни одна из них не повторяет другую (рис 1).

Рисунок 1 – Разнообразие снежинок.

Кристаллы – вещества, в которых мельчайшие частицы (атомы, ионы или молекулы) «упакованы» в определенном порядке. В результате при росте кристаллов на их поверхности самопроизвольно возникают плоские грани, а сами кристаллы принимают разнообразную геометрическую форму. [6],[3]

1.2 Происхождение слова «кристалл»

Слово «кристалл» звучит почти одинаково во всех европейских языках. Много веков назад среди вечных снегов в Альпах, на территории современной Швейцарии, нашли очень красивые, совершенно бесцветные кристаллы, очень напоминающие чистый лед (рис.4). Древние натуралисты так их и назвали – «кристаллос», по-гречески – лед; это слово происходит от греческого «криос» – холод, мороз. Полагали, что лед, находясь длительное время в горах, на сильном морозе, окаменевает и теряет способность таять. Один из самых авторитетных античных философов Аристотель писал, что «кристаллос рождается из воды, когда она полностью утрачивает теплоту». Римский поэт Клавдиан в 390 году то же самое описал стихами:

Ярой альпийской зимой лед превращается в камень.Солнце не в силах затем камень такой растопить.

Аналогичный вывод сделали в древности в Китае и Японии – лед и горный хрусталь обозначали там одним и тем же словом. И даже в 19 в. поэты нередко соединяли воедино эти образы:

Едва прозрачный лед, над озером тускнея,Кристаллом покрывал недвижные струи.

А.С.Пушкин. К Овидию [9],[2]

1.3 Структура кристалла

Кристаллы – это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Поэтому кристаллы имеют плоские грани. Например, крупинка обычной поваренной соли имеет плоские грани, составляющие между собой прямые углы. Это можно заметить, рассматривая соль с помощью лупы. А как геометрически правильна форма снежинки! В ней также отражена геометрическая правильность внутреннего строения кристаллического тела – льда.

Не все кристаллы одинаковы. Существуют монокристаллы и поликристаллы. Твердое тело, состоящее из большого числа маленьких кристаллов, называют поликристаллическим. Одиночные кристаллы называются монокристаллами.

Соблюдая большие предосторожности, можно вырастить металлический кристалл больших размеров – монокристалл. В обычных условиях поликристаллическое тело образуется в результате того, что начавшийся рост многих кристаллов продолжается до тех пор, пока они не приходят в соприкосновение друг с другом, образуя единое тело.

К поликристаллам относятся не только металлы. Кусок сахара, например, тоже имеет поликристаллическую структуру. Большинство кристаллических тел – поликристаллы, так как состоят из множества сросшихся кристаллов. Одиночные кристаллы - монокристаллы, так как имеют правильную геометрическую форму, и их свойства различны по разным направлениям.[10],[6]

Кристаллы образуются при охлаждении расплавов или насыщенных растворов (с понижением температуры растворимость обычно уменьшается и при испарении растворителя). Иногда кристаллы образуются непосредственно при охлаждении паров (снег) или на холодных поверхностях (сублимация). Кристаллы растут с ограниченной скоростью, так как частицы вещества отлагаются, образуя грани.[4]

2 Образование кристаллов

2.1 Образование кристаллов в природе

Минеральные кристаллы образуются в ходе определенных породообразующих процессов. Огромные количества горячих и расплавленных горных пород глубоко под землей в действительности представляют из себя растворы минералов. Когда массы этих жидких или расплавленных горных пород выталкиваются к поверхности земли, они начинают остывать.

Они охлаждаются очень медленно. Минералы превращаются в кристаллы, когда переходят из состояния горячей жидкости в холодную твердую форму. Например, горный гранит содержит кристаллы таких минералов, как кварц, полевой шпат и слюда. Миллионы лет тому назад гранит был расплавленной массой минералов в жидком состоянии. В настоящее время в земной коре имеются массы расплавленных горных пород, которые медленно охлаждаются и образуют кристаллы различных видов.

Природа продолжает преподносить нам сюрпризы, создавая все новые чудеса. Совсем недавно, в 2000 году, в мексиканской пустыне Чихуахуа была открыта необычная пещера, где находятся самые большие природные кристаллы, которые когда-либо создавала природа (рис.1). Мегакристаллы селенита были сформированы гидротермальными жидкостями, исходящими от пещер, расположенных ниже.

Рисунок 1 – Пещера кристаллов

Селенит – разновидность гипса, отличающаяся характерным параллельно-волокнистым строением. Свое название селенит получил за красивые желтовато-серебристые лунные переливы на его поверхности (в Древней Греции Селеной называли богиню Луны).[8]

В горе Найса на глубине 300 метров, в рабочей шахте, где велась добыча цинка, серебра и свинца, шахтеры совершенно случайно обнаружили пустоты, в которых их взору открылись огромные кристаллы селенита. Эти невероятно красивые образования, созданные природой, образуют три полости, которые получили поэтические названия «Глаз Королевы», «Пещера Парусов» и «Стеклянная пещера».

Это самые большие из известных на сегодня природных кристаллов – полупрозрачные лучи неимоверной длины до 15 метров, диаметром 1,2 метра, весом не менее 55 тон каждый – волшебно-причудливым образом переплетены между собой и создают в пещере неимоверной красоты пейзаж. Но полюбоваться этой красотой непросто. Попасть в пещеру без специального обмундирования и оборудования невозможно без риска для жизни. Температура воздуха там составляет около 50 градусов Цельсия, а влажность – практически 100%! Даже в специальном костюме находиться в этих пещерах можно не очень долго – около часа.

Но не только это мешает спелеологам в путешествии по пещере гигантских кристаллов. Нагромождения кристаллов так причудливо сплетены, что порой между ними нельзя пройти человеку, но разрушать эту красоту у ученых и исследователей рука не поднимается.

Увидеть это природное чудо света все же возможно – здесь нам на помощь приходит фотография (Приложение А), но она, к сожалению, не может полностью передать «холодную» кристаллическую красоту подземных пустот, заполненных огромными кристаллами.

Исследователи уверены, что подобных пещер в мексиканской пустыне еще несколько, и они ждут своих первооткрывателей![7]

2.2 Выращивание кристаллов в промышленности

Начиная с XIX века появились технологии выращивания искусственных кристаллов. Некоторые из этих ювелирных камней настолько совершенны, что их крайне сложно отличить от натуральных. Синтетические кристаллы востребованы в промышленности и на рынке ювелирных изделий.

Первые успешные попытки синтеза драгоценных камней приходятся на конец XIX века. В 1877 году Эдмон Фреми и Шарль Фейль получили кристаллы рубина.

В 1902 году Огюст Вернейль смог синтезировать рубины методом плавления в пламени, положив начало промышленному синтезу ювелирных камней. Данный метод, с некоторыми изменениями, до сих пор остается одним из самых распространенных способов выращивания кристаллов ювелирного качества.

Схема аппарата Вернейля

и монокристалл корунда, полученный этим методом.

Порошковая шихта, состоящая из оксида алюминия с добавлением 2% оксида хрома, помещается в печь. Под ударами молотка шихта попадает вниз, контактирует с кислородом и водородом, достигая в пламени температуры 2000оС. Капли расплавленного материала падают на стержень, на котором образуется шарик кристалла, медленно приобретающий грушевидную форму.[5]

Особое место среди кристаллов занимают драгоценные камни, которые с древнейших времен привлекают внимание человека. Люди научились получать искусственно очень многие драгоценные камни. Например, подшипники для часов и других точных приборов уже давно делают из искусственных рубинов. Получают искусственно и прекрасные кристаллы, которые в природе вообще не существуют. Например, фианиты – их название происходит от сокращения ФИАН – Физический институт Академии наук, где они впервые были получены. Фианиты – искусственные кристаллы, которые внешне очень похожи на бриллианты (рис.2).

Рисунок 2 – Фианит.

Исследователи из США сумели вырастить огромные кристаллы пирофосфата калия. Самый крупный из кристаллов весит 318 килограмм. Он рос в большом баке, где при температуре 65 градусов Цельсия испарялся раствор пирофосфата калия. Молекулы отлагались на затравке размером меньше наперстка, и через 52 дня вырос прозрачный гигант почти без дефектов.

Кристаллы будут использоваться для сооружения сверхмощных лазеров.[9],[2]

3. Основные свойства кристаллов.

Температура плавления.

Плавление – это переход вещества из твёрдого состояния в жидкое.

Процесс плавления любого кристалла происходит при постоянной температуре, называемой температурой плавления. Например, если взять кристалл льда и положить его в тёплое место, то он растает – расплавится. В процессе плавления температура не повысилась. То же самое можно было бы установить и для любого другого кристалла.

Симметрия.

Идеальные формы кристаллов симметричны. По выражению известного русского кристаллографа Е. С. Фёдорова (1853-1919), «кристаллы блещут симметрией».

В кристаллах можно найти различные элементы симметрии: ось симметрии, плоскость симметрии, центр симметрии.

У кристаллов медного купороса имеется лишь центр симметрии, других элементов симметрии у них нет.

Из этого небольшого обзора симметрий различных кристаллов можно сделать вывод, что различные кристаллы обладают разной симметрией.

Закон постоянства углов – основной закон кристаллографии.

В кристаллах одного вещества углы между соответственными гранями всегда одинаковы – так звучит закон постоянства углов.

Что же понимают под соответственными гранями?

В геометрии грани (плоские многоугольники) считаются равными, если они при наложении совпадают всеми своими точками. В кристаллографии равенство граней означает совершенно иное. Грани могут отличаться межу собой по форме и всё-таки считаться равными, если они обладают одинаковыми физическими и химическими свойствами. Установить равенство граней в кристаллографическом смысле удаётся иногда путём внешнего их осмотра. В сомнительных случаях производят травление поверхности кристалла кислотой. На равных гранях рисунок, полученный при травлении, будет одинаковым.

На рисунке одинаковой штриховкой показаны равные (одинаковые) грани.[6]

Все кристаллы имеют кристаллическую решётку.

Взаимодействие частиц в кристалле приводит к тому, что частицы устанавливаются только в определённых положениях, где силы, действующие на них, оказываются скомпенсированными, а потенциальная энергия их взаимодействия становится наименьшей. Такое строение и называют кристаллической решёткой, а положения, в которых могут располагаться частицы, - узлами кристаллической решётки.

Чтобы понять, например, орнамент, надо всего лишь найти закономерность построения и рисунок, который часто повторяется. Аналогично, чтобы представить строение кристалла, достаточно знать строение элементарной ячейки.

Элементарная ячейка – это совокупность минимального числа частиц, регулярно повторяющаяся внутри кристалла. На рисунке показаны элементарные ячейки алмаза, графита, α-железа, β-железа.

Полиморфизм.

Полиморфизм – свойство вещества иметь две (или несколько) различные кристаллические структуры. Ярким примером такого вещества является углерод. Вот вещества, которые представляют собой углерод в чистом виде:

  • Сажа, или копоть, - мягкий чёрный порошок, собирающийся на внешней поверхности кастрюль и сковородок, помещаемых в пламя, или в печной трубе; выбрасываемый из заводских труб чёрными клубами дым.

  • Уголь древесный или каменный – является одним из основных видов топлива.

  • Графит – мягкий стерженёк карандаша, оставляющий след на бумаге.

  • Алмаз – самый дорогой и самый красивый из драгоценных камней. Граненый алмаз называют бриллиантом.[2],[4]

Выращивание кристаллов поваренной соли.

Опыт 1: Наша задача – вырастить красивые кристаллы соли из насыщенного раствора.

Процесс выращивания не требует наличия каких-то особых химических препаратов. У нас всех есть пищевая соль (или поваренная соль), которую мы принимаем в пищу. Её также можно назвать и каменной. Кристаллы поваренной соли NaCl представляют собой бесцветные прозрачные кубики. В идеале должны получиться прямоугольные кристаллы (это связано с тем, что NaCl имеет кубическую кристаллическую решетку).

Чтобы вырастить кристалл необходимо подготовить:

- соль;

- воду;

- кастрюлю;

- ложку, чтобы размешивать раствор;

- ёмкость, где будет находиться раствор.

Разведем раствор поваренной соли следующим образом: нальем воду водой (не более 50 °С – 60 °С). Насыпаем пищевую соль в стакан и оставляем на 5 минут, предварительно помешав. За это время соль растворится. Желательно, чтобы температура воды пока не снижалась. Затем добавим ещё соль и снова перемешаем. Повторяем этот этап до тех пор, пока соль уже не будет растворяться, и будет оседать на дно стакана. Мы получили насыщенный раствор соли. Переливаем его в чистую ёмкость такого же объёма, избавившись при этом от излишек соли на дне. Выбираем любой понравившийся более крупный кристаллик поваренной соли и помещаем его на дно стакана с насыщенным раствором. Можно кристаллик привязать за нитку и подвесить, чтобы он не касался стенок стакана. Переносим ёмкость с насыщенным раствором и кристалликом в место, где нет сквозняков, вибрации и сильного света (выращивание кристаллов требует соблюдение этих условий).Накрываем чем-нибудь сверху ёмкость с кристалликом от попадания пыли и мусора.

Уже через пару дней можно заметить значительный для кристаллика рост. С каждым днём он будет увеличиваться. А если проделать всё ещё раз (приготовить насыщенный раствор соли и опустить в него этот кристаллик), то он будет расти гораздо быстрее

Приложение 1

Опыт 2:Цель работы: наблюдать процесс перехода тела из жидкого состояния в кристаллическое

Оборудование: лоток пробирка пакетик с натриевой солью, чашка.

Предварительно натриевую соль (вещество розового цвета) пересыпаем из пакетика в пробирку. Несколько кристалликов оставляем в пакетике. Пробирку помещаем в горячую воду для того чтобы вещество расплавилось. При температуре горячей воды около 70 градусах плавление длится 3-5 минут. Расплавленную соль выливаем в чашку. Спустя 3 минуты туда же помещаем 3-4 кристаллика соли. После того как жидкость охладилась до температуры кристаллизации, наблюдаем за ростом кристаллов вокруг затравок.

Вывод: кристаллы образуются не только на затравках, центрами кристаллизации являются так же примеси и неоднородности поверхности кристаллизатора.Приложение 2

Опыт 3.

«Нахождение оптимальной концентрации раствора для роста монокристалла и поликристалла - приложение 3

Вывод: в ходе опыта я выяснил: для того, чтобы вырастить монокристалл поваренной соли, надо 50 мл воды и 30 г соли. Для того, чтобы вырастить красивый поликристалл, надо 50 мл воды и 50г соли.

Опыт №4

«Сравнение кристаллов медного купороса и поваренной соли».

Для того, чтобы вырастить кристалл медного купороса, я поступал следующим образом: к 50мл очень горячей воды добавлял кристаллы медного купороса до получения насыщенного раствора (30 г). Опускал в насыщенный горячий раствор кристаллик на хлопчатобумажной нити (нить с «затравкой») и ставил раствор в теплое место (вода испаряется, и раствор все время является насыщенным) - Приложение 4

Вывод: у веществ разного химического состава кристаллы имеют разную форму и отличаются по таким свойствам, как симметрия, выращивание, к тому же углы, образованные соответственными гранями, в кристаллах разных веществ будут неравными. Но есть и сходства, например, оба кристалла имеют кристаллическую решётку.

ЗАКЛЮЧЕНИЕ

При выполнении этой работы я выяснил, что мир кристаллов красив и разнообразен. Каждый его «представитель» уникален по своим свойствам, размерам и особенностям строения. Кроме того, что кристаллы красивы, они играют важную роль в жизни человека.

В ходе работы я исследовал очень интересное свойство кристаллов – их рост в искусственной среде. Оказывается, кристаллы можно вырастить дома, без каких- либо усилий. Для быстрого выращивания нужны оптимальные условия. Например, чтобы вырастить кристалл поваренной соли (за короткий срок), нужно поставить стакан с раствором в тёплое место, но раствор приготовить оптимальной концентрации – 50 мл воды и 30-50 г соли. Если кристаллизация происходит медленно, то вырастет монокристалл, а если быстро – поликристалл.

При изучении кристаллов я убедился: свойства их настолько разнообразны, что я смог исследовать лишь некоторые из них.

Вывод:

  • при благоприятных условиях поваренная соль, медный купорос принимают форму кристаллов;

  • кристаллы различных веществ имеют разную форму;

  • кристаллы различных веществ имеют различные свойства (одни кристаллы окрашиваются, другие – бесцветны; одни кристаллы растут хорошо, другие – плохо).

  • быстрее и легче кристалл растёт тогда, когда в насыщенный раствор помещается кристалл- «затравка».

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

  1. Афонькин С.Ю. Минералы и драгоценные камни. Школьный путеводитель.-СПб.: «БКК», 2012 г. – 96 с.

  2. Белов Н.В. Энциклопедия драгоценных камней и кристаллов.- Минск: «Харвест», 2009 г. – 159 с.

  3. Большая книга «Почему». Перевод с итальянского Ольги Живаго.- М.: РОСМЭН, 2011 г.- 240 с.

  4. Журнал «Галилео. Наука опытным путём», №7, 2011 г.

  5. Журнал для любознательных «Юный эрудит», №10 (октябрь), 2009 г.

  6. Шаскольская М.П.. Кристаллы. - М.: Наука, 1978 г. – 208 с.

  7.  http://www.geologiazemli.ru/articles/112 - Геология Земли .

  8. http://ru.wikipedia.org/wiki/E519 - ВикипедиЯ – свободная энциклопедия.

  9. http://www.kristallov.net/mineraly.html - Кристаллов.NET.

  10.  http://mirkristallov.com/- Мир кристаллов.

Приложение 1

Выращивание кристаллов

Приложение 2

Приложение 3

Общие сведения наблюдений

Температура окружающей среды, в которой находится раствор

Объём воды и масса соли в растворе

Получившийся кристалл

1 стакан

Температура окружающей среды одинакова, она равна 23 °С

Vвода = 50 мл

mсоль = 70 г

В этом стакане кристалл вырос быстрее всех; по виду – поликристалл.

2 стакан

Vвода = 50 мл

mсоль = 50 г

Вырос поликристалл средней формы и размеров.

3 стакан

Vвода = 50 мл

mсоль = 30 г

Вырос монокристалл, хоть и маленький, но симметричный и правильной формы; он рос медленнее всех.

1 стакан: Vвода = 50 мл, mсоль = 70 г

2 стакан: Vвода = 50 , m= 50 г

3 стакан: Vвода = 50 мл, mсоль = 30 г

Приложение 4

Общие сведения наблюдений

Температура окружающей среды, в которой находится раствор

Объём воды и масса соли в растворе

Получившийся кристалл

Медный купорос

1 стакан

t= 30°С

Vвода = 50 мл

mсоль = 30г

Кристалл получился голубоватого оттенка, симметричен (монокристалл)

Поваренная соль

2 стакан

t= 30°С

Vвода = 50 мл

mсоль = 30г

Кристалл получился в форме куба (монокристалл)

Дневник наблюдений

День

Совершаемое действие

1 стакан

2 стакан

1 день

Приготовление раствора

Приготовили раствор медного купороса

Приготовили раствор поваренной соли

2 день

Оценка изменений

Ничего не произошло

На дне появились мелкие кристаллики

3 день

Приготовление затравки для раствора

Взяли кристаллик медного купороса, завязали его на нити, опустили в раствор

Опустили в раствор нить с затравкой

4 день

Оценка появившихся кристаллов

На нити появились маленькие кристаллики

Появились кристаллики на нити кубической формы

5 день

Сравнение появившихся кристаллов

Появившиеся кристаллы по размерам больше, чем кристаллы поваренной соли, но всё же маленькие

Кристаллики очень малы по размерам

6 день

Оценка кристаллов

Образовался моно кристалл небольшого размера

Образовался монокристалл

7 день

Сравнение и оценка кристаллов (итог)

В итоге на нити образовался монокристалл средних размеров

На нити образовался небольшой монокристалл

17

multiurok.ru

Исследовательский проект по химии "В удивительном мире кристаллов"

Муниципальное казённое общеобразовательное

учреждение «Средняя школа № 17»

Проект по химии на тему:

«В удивительном мире кристаллов»

Авторы: обучающиеся 9 класса «А»

МКОУ СШ № 17

Киселева Анастасия и

Коршик Екатерина

Руководитель: Барышникова

Мария Владимировна

г. Палласовка, 2018 г.

Оглавление

  1. Введение 3 стр.

  2. Основная часть 5 стр.

    1. Общая информация о кристаллах 5 стр.

    2. Природные кристаллы 5 стр.

    3. Искусственные кристаллы 5 стр.

  3. Практическая часть

    1. Выращивание кристаллов хлорида меди 7 стр.

    2. Выращивание кристаллов медного купороса 8 стр.

    3. Выращивание кристаллов меди 8 стр.

    4. Выращивание кристалла нитрата калия 10 стр.

    5. Выращивание кристалла перманганата калия 10 стр.

    6. Выращивание кристаллов поваренной соли 11 стр.

  4. Заключение 12 стр.

  5. Список литературы и Интернет-ресурсов 13 стр.

Приложение №1 14 стр.

Приложение №2 15 стр.

I. Введение

Всякий кристалл, как и всё существующее в природе,

претерпевает со временем ряд изменений,

составляющих то, что условно называют «жизнью».

                         А.В. Шубников

     Издавна внимание человека привлекают изумительные по совершенству творения неживой природы — кристаллы. О них мы знаем с глубокой древности, но лишь в XVII-XVIII вв. начала формироваться наука о кристаллах - кристаллография. Долгое время объектами исследования  были природные минералы. В дальнейшем с развитием  химии начала формироваться кристаллохимия, позволившая объяснить многие явления в кристаллах. Развитие теории образования кристаллов, особенностей их возникновения и роста стимулировало разработки методов синтеза искусственных кристаллов. Кристаллография создала целый ряд специальных методик и способов, имеющих большое практическое значение и распространение.

  Гипотеза исследования:

    Читая дополнительную литературу, мы узнали, что кристаллы могут появляться при использовании разных способов выращивания и при создании определенных для них условий. Значит, если изменять условия кристаллизации и растворять различные вещества, то можно получать кристаллы разной формы и цвета? Это мы и решили проверить опытным путем.

 Цель нашей работы: изучение методики получения кристаллов и их исследование в лабораторных условиях.

Задачи:

  • изучить материал  о процессе кристаллизации, о способах и методах получения кристаллов, их форме, видах, свойствах и областях применения;

  • апробировать опытно-экспериментальным путем способы получения кристаллов из растворов

  • исследовать  форму полученных кристаллов;

  • исследовать влияние примесей на форму кристаллов.

Объект исследования: кристаллы веществ

Предмет исследования: процесс кристаллизации

Методы исследования:

•    эксперимент;

•    наблюдение;

•    анализ;

•    сравнение;

•    обобщение;

•    изучение специальной литературы;

•    работа с Интернет - источниками

Новизна работы состоит в том, что она позволила почувствовать себя в роли экспериментаторов и самостоятельно получить образцы кристаллов.

      Эксперимент по выращиванию кристаллов различными способами мы проводили в течение месяца. За это время мы хорошо освоили способы приготовления растворов, приемы фильтрования, выпаривания. Проведенная работа позволила удовлетворить наш большой практический интерес к химии кристаллов, расширила научные познания в данной области и позволила совершенствовать практические умения и навыки. 

  Данная работа может быть полезной для других. Здесь можно взять идеи по использованию самостоятельно выращенных кристаллов, продолжить изучение кристаллов при их нарастании и найти причины нетипичного поведения некоторых из них

     Прежде чем провести свои практические исследования, мы должны узнать, что такое процесс кристаллизации, какие при этом кристаллы образуются и как влияют различные условия на процесс образования кристаллов. Поэтому мы обратились к теоретическим источникам в этой области. Для этого мы использовали научно-методическую литературу и Интернет.

II. Основная часть

2.1 Общая информация о кристаллах

Кристаллы – твердые тела, атомы, ионы или молекулы которых образуют упорядоченную периодическую структуру (кристаллическую решетку). Кристаллы могут иметь от четырех до нескольких сотен граней. Но при этом они обладают замечательным свойством –какими бы ни были размеры, форма и число граней одного и того же кристалла, все плоские грани пересекаются друг с другом под определенными углами. Углы между соответственными гранями всегда одинаковыми.Закон постоянства углов, открытый в 1669 г. датчанином Николаем Стено, является важнейшим законом науки о кристаллах — кристаллографии. 

2.2 Природные кристаллы

  Самый известный кристалл в природе – это кристалл поваренной соли.  Обыкновенная столовая соль, хлористый натрий, без которого человек не может обойтись, представляет собой очень мелкие кристаллики, в земле же соль встречается иногда в виде очень больших кристаллов - так называемой каменной соли.

  Особенно интересна кристаллизация подземных вод в пещерах. Капля за каплей просачиваются воды и падают со сводов пещеры вниз. Каждая капля при этом частично испаряется и оставляет на потолке пещеры вещество, которое было в ней растворено. Так постепенно образуется на потолке пещеры маленький бугорок, вырастающий затем в сосульку. Эти сосульки сложены из кристалликов. Навстречу им начинают расти вверх такие же длинные столбы сосулек со дна пещеры. Иногда сосульки, растущие сверху (сталактиты) и снизу (сталагмиты), встречаются, срастаются вместе и образуют колонны. 

Драгоценный камень жемчуг тоже построен из мелких кристаллов, которые вырабатывает моллюск жемчужница. Если в раковину жемчужницы попадает песчинка или камешек, то моллюск начинает откладывать перламутр вокруг пришельца. Слой за слоем нарастает на песчинке перламутр, образующий шарики жемчуга.

2.3 Искусственные кристаллы

      Сегодня растят не только то, что необходимо для промышленного применения, но и просто красивые камни для украшений, типа фианитов и изумрудов. Значение сверхчистых кристаллических материалов в нашей жизни огромно. Электроника использует особо чистый кристаллический кремний, сапфир, рубин и кварц, машиностроение — искусственные алмазы, корунд, рубин, нитевидный углерод. [3]

Особый класс материалов составляют так называемые жидкие кристаллы. Эти уникальные вещества, сочетающие в себе подвижность жидкости и анизотропию твердого тела, по сути кристаллами не являются и выглядят, как обычная мутная жидкость, если их налить в стакан. Но в виде тонкого слоя, заключенного между двумя стеклянными пластинами с токопроводящим покрытием, они превращаются в тот самый ЖК-дисплей, без которого не обходятся сегодня ни сотовые телефоны, ни персональные компьютеры.

Таким образом, мы выяснили, что КРИСТАЛЛИЗАЦИЯ - процесс образования кристаллов из паров, растворов, расплавов, из вещества в другом кристаллическом или аморфном состоянии. Кристаллизация начинается при достижении некоторого предельного условия, например, переохлаждения жидкости или пресыщения пара, когда практически мгновенно возникает множество мелких кристалликов — центров кристаллизации. Кристаллики растут, присоединяя атомы или молекулы из жидкости или пара. Зависимость скорости роста от условий кристаллизации приводит к разнообразию форм роста и структуры кристаллов. В процессе кристаллизации неизбежно возникают различные дефекты.

III. Практическая часть

3.1 Выращивание кристаллов хлорида меди CuCl2

Приготовили насыщенный раствор хлорида меди, перелили раствор в плоскодонную чашку и поставили на подоконник. Через 14 дней раствор из колбы испарился и образовались кристаллы.

3.2 Выращивание кристаллов медного купороса CuSO4

Налили в сосуд горячей кипячённой воды. Добавили медный купорос и тщательно размешали. Медный купорос добавляли до тех пор, пока соль не перестала растворяться в воде. Получили перенасыщенный раствор, который потом отфильтровали. Раствор разлили в две емкости, в одну опустили медную проволоку, а второй оставили на подоконнике – остывать. При остывании раствор еще становится более перенасыщенным и, кристаллы выпадают на медную проволоку и на дно. Вода испаряется, и количество кристаллов увеличивается.

3.3 Выращивание кристаллов меди

 В стакан насыпали медный купорос тонким слоем, чтобы он покрыл дно и утрамбовывали. Сверху насыпали хлорид натрия, он должен превышать количество медного купороса в 3-5 раз. Слой также утрамбовали. Поверх слоёв уложили круг из фильтровальной бумаги так, чтобы он вплотную прикасался к стенкам стакана. На фильтр высыпали железные предметы. Теперь удерживая фильтр стеклянной палочкой, налили медленно и тоненькой струйкой концентрированный раствор хлорида натрия. Чтобы все слои хорошо пропитались и воздух вышел, вдоль стенки опустили тонкую упругую проволоку, давая лишний канал раствору до дна. Стакан закрыли фильтровальной бумагой и оставили стоять при комнатной температуре.

Спустя пару суток слои солей окрасились в зелёный цвет, это, очевидно, связано с образованием в слоях хлорида меди (II) CuCl2. После того, как “зелень” дойдёт до фильтра, начнут появляться в слое хлорида натрия розовые нити-дендриты (не сформировавшиеся кристаллы) меди, которые иногда приобретают удивительный вид папоротниковых и еловых веточек.

Мы дали им разрастись, вскоре получили обещанные ярко-розовые кристаллы меди, имеющие вид призм и октаэдров.

1 2

3

3.4 Выращивание кристалла нитрата калия KNO3

В 100 г горячей воды мы растворили 50 г очищенного нитрата калия, и сосуд, накрытый бумагой, оставили в комнатной температуре на несколько дней. Через два дня наблюдали выпадение кристаллов игольчатой формы.

3.5 Выращивание кристалла перманганата калия KMnO4

 Приготовили в химическом стаканчике при нагревании насыщенный раствор перманганата калия. Тщательно очистили предметное стекло от пыли и отпечатков пальцев. Нанесли на предметное стекло пипеткой раствор соли и немного нагрели  в пламени спиртовки до  появления первых кристаллов. Наблюдали кристаллы серого цвета, игольчатого типа.

В отличии от кристаллов хлорида меди, эти кристаллы одиночные.

3.6 Выращивание кристаллов поваренной соли NaCl

Бесцветные кристаллы поваренной соли имеют форму куба. Многие кристаллы имеют внутри полости, заполненные раствором, из которого соль выкристаллизовалась. Чем крупнее кристаллы, тем больше в них жидкости. Поэтому даже совершенно сухая с виду поваренная соль, особенно крупная, трещит и «разбрызгивается», если её бросить на горячую сковороду: вскипающая вода «взрывает» кристаллы. Одновременно с кубическими кристаллами мы обнаружили кристаллы, имеющие форму пирамид.

IV. Заключение

  • В нашем проекте мы рассказывали о кристаллах, их свойствах.

  • Мы убедились на практике, что выращивать кристаллы – увлекательное занятие.

  • Вырастили кристаллы из поваренной соли, хлорида меди, медного купороса, нитрата калия, перманганата калия, меди.

  • Составили мини-коллекцию выращенных кристаллов и подготовили презентацию проекта.

  • Наша работа расширила научные познания в химии и позволила совершенствовать практические умения и навыки.

V. Список литературы и Интернет-ресурсов:

1. Леенсон И.А. Занимательная химия. 1 часть. М.: Дрофа, 1996

2. О. Ольгин, “Опыты без взрывов”, М.; “Химия”, 1995 г.;

3. Журнал «Вокруг света» статья «Феномен: Кристаллические премудрости», №3 2004 год

4. Журнал «Наука и жизнь» статья «Из чего все состоит» М. Каганова, №10, 2003 г.

5. Попов Г. М., Шафрановский И. И., Кристаллография, 5 изд., М., 1972.г.

6. Большая Советская энциклопедия, издательство «Советская энциклопедия» , 1990 г.

7. Матусевич Л.Н. Кристаллизация из растворов в химической промышленности. М. Химия.1968.

8. Шаскольская М. П.; «Кристаллы», М.: Наука, 1985 г.;

9. Шаскольская М. П.; «Очерки о свойствах кристаллов», М.: Наука, 1978 г.;

10. Журнал Химиков-Энтузиастов «Химия и Химики» № 7 2010

http://chemistry-chemists.com/Video1/Crystals-b.html

11. Журнале «Химия и жизнь» №3 1972 статья «Вырастим кристаллы меди»

http://himiklab.org.ua/cryst_cu.shtml

Приложение №1

Методика приготовления маточного раствора.

Помните!

Для выращивания кристаллов используют только свежеприготовленные растворы!!!

Для приготовления маточного раствора требуется чистый, хорошо вымытый термостойкий стакан на 1л. В него наливают горячую кипячёную воду или, что лучше, дистиллированную 700-800 мл. В стакан засыпают вещество небольшими порциями (1 порция = 1 столовая ложка без горки), каждый раз перемешивая и добиваясь полного растворения. Когда раствор “насытится” – вещество будет оставаться на дне, – добавляют ещё две порции и оставляют раствор при комнатной температуре на сутки. Чтобы в раствор не попала пыль, его накрывают листом фильтровальной бумаги и оставляют в той части помещения, где сохраняется постоянная температура, где в дальнейшем вы будете продолжать опыт. Если проходит отопительный сезон, то можно оставить стакан и около батареи, но помните, что растворимость у вещества теперь будет другая. И стоит измениться температуре, как возникнет быстрая избыточная кристаллизация.

Помните: чтобы кристаллы росли как можно правильно, а у бесцветного вещества они были прозрачными, кристаллизация должна идти медленно, иначе кристалл мутнеет!!!

Примечание: В том случае, если обнаружены примеси, раствор подогревают на 200C (поставьте стакан с раствором в таз с тёплой водой на 1-2 часа) и фильтруют на воронке, внутрь которой помещают фильтр или (что быстрее и лучше) кусочек ваты, затем повторяют охлаждение до комнатной температуры. Этот раствор будет необходим нам в большом количестве, поэтому вы должны иметь посуду для его хранения и по необходимости готовить дополнительно. Хранить его можно в колбе с притёртой пробкой, на дне должны оставаться кристаллы.

Приложение №2

Коллекция кристаллов

Перманганат калия KMnO4 Кристаллы меди

Нитрат калия KNO3 Сульфат меди CuSO4

Хлорид меди CuCl2

Хлорид натрия NaCl

infourok.ru

Проект на тему "Выращивание кристаллов в домашних условиях"

Министерство образования и науки РЕспублики казахстан

Тема работы:

«Выращивание кристаллов в домашних условиях»

Автор: Смоленников Павел Сергеевич

ученик 11 «Б» класса

КГУ «Средняя школа №12поселка Осакаровка»

акимата Осакаровского района

Карагандинской области

Научный руководитель: Крестьянникова Елена Валериевна

учитель химии, 1-ой категории

КГУ «Средняя школа №12поселка Осакаровка»

акимата Осакаровского района

Карагандинской области

2014 год

Содержание

  1. Введение 3 стр.

    1. Теория кристаллов 3 стр.

      1. Охлаждение насыщенного раствора 4 стр.

      2. Постепенное удаление воды из насыщенного раствора 5 стр.

      3. Быстрое удаление воды из насыщенного раствора 6 стр.

    2. Методы выращивания кристаллов 6 стр.

    3. Кристаллы и их применение 8 стр.

  2. Практическая часть 10 стр.

  3. Заключение 15 стр.

  4. Литературные источники 16 стр.

Введение

Глава 1. Теория кристаллов.

Кристаллы — это твердые тела, атомы или молекулы которых занимают определенные, упорядоченные положения в пространстве. Поэтому кристаллы имеют плоские грани. Например, крупинка обычной поваренной соли имеет плоские грани, составляющие друг с другом прямые углы. Кристаллическую структуру имеют металлы. Если взять сравнительно большой кусок металла, то на первый взгляд его кристаллическое строение никак не проявляется ни во внешнем виде куска, ни в его физических свойствах. Металлы в обычном состоянии не обнаруживают анизотропии. Дело здесь в том, что обычно металл состоит из огромного количества сросшихся друг с другом  маленьких кристалликов. Свойства каждого кристаллика зависят от направления, но кристаллики ориентированы по отношению друг к другу беспорядочно. В результате в объеме, значительно превышающем объем отдельных кристалликов, все направления внутри металлов равноправны и свойства металлов одинаковы по всем направлениям. Твердое тело, состоящее из большого числа одиночныхкристалликов, называют поликристаллическим. Одиночные кристаллы называют монокристаллами. К поликристаллам относятся не только металлы. Большинство кристаллических тел — поликристаллы, так как они состоят из множества сросшихся кристаллов. Одиночные кристаллы — монокристаллы имеют правильную геометрическую форму, и их свойства различны по разным направлениям.

Жидкие кристаллы— вещества, которые ведут себя одновременно как жидкости и как твёрдые тела. Молекулы в жидких кристаллах, с одной стороны, довольно подвижны, с другой — расположены регулярно, образуя подобие кристаллической структуры (одномерной или двумерной). Часто уже при небольшом нагревании правильное расположение молекул нарушается, и жидкий кристалл становится обычной жидкостью. Напротив, при достаточно низких температурах жидкие кристаллы замерзают, превращаясь в твёрдые тела. Регулярное расположение молекул в жидких кристаллах обусловливает их особые оптические свойства. Свойствами жидких кристаллов можно управлять, подвергая их действию магнитного или электрического поля. Это используется в жидкокристаллических индикаторах часов, калькуляторов, компьютеров и последних моделей телевизоров. Соблюдая большие предосторожности, можно вырастить кристалл больших размеров — монокристалл.

В обычных условиях поликристаллическое тело образуется в результате того, что начавшийся рост многих кристаллов продолжается до тех пор, пока они не приходят в соприкосновение друг с другом, образуя единое тело — поликристалл(см. рис. 1).

 

Рисунок 1. Поликристалл меди

Чтобы вырастить кристалл, полезно знать, какие процессы управляют его ростом; почему разные вещества дают кристаллы различной формы, а некоторые вовсе не образуют кристаллов; что надо сделать, чтобы кристаллы получились большими и красивыми.

Если кристаллизация идёт очень медленно, то получается один большой кристалл, если быстро — множество мелких кристаллов Выращивание кристаллов производят разными способами:

1.Охлаждение насыщенного раствора.

С понижением температуры растворимость большинства веществ уменьшается, и они, как говорят, выпадают в осадок. Сначала в растворе и на стенках сосуда появляются крошечные кристаллы-зародыши. Когда охлаждение медленное, а в растворе нет твёрдых примесей (скажем, пыли), зародышей образуется немного, и постепенно они превращаются в красивые кристаллы правильной формы. При быстром охлаждении центров кристаллизации возникает много, сам процесс идёт активнее и правильных кристаллов при этом не получится (см. рис. 2)

 

Рисунок 2 На стенках сосуда образовались множество различных мелких кристалликов

 2.Постепенное удаление воды из насыщенного раствора

В этом случае чем медленнее удаляется вода, тем лучше получаются кристаллы. Можно оставить открытый сосуд с раствором при комнатной температуре на длительный срок — вода при этом будет испаряться медленно (особенно если сверху положить лист бумаги или прикрыть марлей). Растущий кристалл можно либо подвесить в насыщенном растворе на тонкой прочной нитке, либо положить на дно сосуда. В последнем случае кристалл периодически надо поворачивать на другой бок. По мере испарения воды в сосуд следует подливать свежий раствор (см. рис. 3).

 Рисунок 3 Кристалл, полученный на дне сосуда из раствора медного купороса с добавлением соли и железных опилок

 3. Быстрое удаление  воды из насыщенного раствора

В этом случае кристаллы получаются правильной формы, с острыми гранями, но мелкими (раствор находился в широком сосуде рядом с нагревателем) (см. рис. 4)

 

  

Рисунок 4 Монокристаллы, полученные при быстром испарении раствора

 Выращивание кристаллов — процесс интересный, занимательный, но требующий бережного и осторожного отношения к своей работе. Время от времени кристаллизатор необходимо чистить: сливать раствор и удалять мелкие кристаллики, наросшие на основном, а также на стенках и дне сосуда. Теоретически размер кристалла, который можно вырастить таким способом, неограничен. Если выращенный кристалл оставить открытым в сухом воздухе, он, постепенно теряя содержащуюся в нём воду, превратится в невзрачный серый порошок. Чтобы предохранить кристалл от разрушения, его можно покрыть бесцветным лаком.

Методы выращивания кристаллов

В исследовательских лабораториях и промышленности выращивают кристаллы из паров, расплавов и растворов, из твердой фазы, синтезируют путем химических реакций, осуществляют электролитическую кристаллизацию, кристаллизацию из гелей и другие. В настоящее время для получения совершенных кристаллов большого диаметра чаще всего применяют следующие методы выращивания:

- из газовой (паровой) фазы при градиенте давления,

-из расплавов при температурном градиенте,

-из растворов при градиенте концентрации на границе раздела кристалл- раствор.

Кристаллизация из паровой (газовой) фазы широко используется для выращивания как массивных кристаллов, так и эпитаксиальных пленок, тонких (поликристаллических или аморфных) покрытий, нитевидных и пластинчатых кристаллов. Конкретный метод выращивания выбирают в зависимости от материала. В методах выращивания, основанных на физической конденсации кристаллизуемого вещества, вещество поступает к растущему кристаллу в виде собственного пара, состоящего из молекул их ассоциаций – димеров, триммеров и так далее. В методе синтеза в паровой фазе кристаллизуемое соединение образуется в результате реакции между газообразными компонентами непосредственно в зоне кристаллизации.

Кристаллизация из расплава - это наиболее распространенный способ выращивания монокристаллов. В настоящее время более половины технически важных кристаллов выращивают из расплава. Веществами, наиболее подходящими для выращивания из расплава, являются те, которые плавятся без разложения, не имеют полиморфных переходов и характеризуются низкой химической активностью[1].Методами кристаллизации из расплава выращивают элементарные полупроводники и металлы, оксиды, галогениды, халькогениды, вольфраматы, ванадаты, ниобаты и другие вещества. В ряде случаев из расплава выращиваются монокристаллы, в состав которых входит пять и более компонентов. При кристаллизации из расплава важно учитывать процессы, влияющие на состав расплава (термическая диссоциация, испарение, взаимодействие расплава с окружающей средой), процессы на фронте кристаллизации, процессы теплопереноса в кристалле и расплаве, процессы массопереноса (перенос примесей, обусловленный конвекцией и диффузией в расплаве)[2].

Кристаллизацию из растворов применяют при выращивании веществ, разлагающихся при температурах ниже температуры плавления. Рост кристаллов осуществляется при температурах ниже температуры плавления, поэтому в выращенных такими методами кристаллах отсутствуют дефекты, характерные для кристаллов, выращенных из расплава. При выращивании кристаллов из растворов движущей силой процесса является пересыщение. Методом температурного перепада выращивают, например, кристаллы дигидрофосфата калия и дигидрофосфата аммония. Скорость роста кристаллов в таких условиях составляет около 1 мм/сут. Кристаллы весом 400 г. растут в течение 1,5-2 месяцев[2].

Кристаллы и их применение.

Живя на Земле, сложенной кристаллическими пародами, мы, безусловно, никак не можем отвлечься от проблемы кристалличности: мы ходим по кристаллам, строим из кристаллов, обрабатываем кристаллы на заводах, выращиваем их в лабораториях, широко применяем в технике и науке, едим кристаллы, лечимся ими … Изучением многообразия кристаллов занимается наука кристаллография. Она всесторонне рассматривает кристаллические вещества, исследует их свойства и строение. В давние времена считалось, что кристаллы представляют собой редкость. Действительно, нахождение в природе крупных однородных кристаллов – явление нечастое. Однако мелкокристаллические вещества встречаются весьма часто. Так, например, почти все горные породы: гранит, песчаники, известняк–кристалличны. По мере совершенствования методов исследования кристалличными оказались вещества, до этого считавшиеся аморфными. Сейчас мы знаем, что даже некоторые части организма кристалличны, например, роговица глаза, витамины, мелиновая оболочка нервов - это кристаллы. Долгий путь поисков и открытий, от измерения внешней формы кристаллов в глубь, в тонкости их атомного строения еще не завершен. Но теперь исследователи довольно хорошо изучили его структуру и учатся управлять свойствами кристаллов.

Кристаллы - это красиво, можно сказать чудо какое-то, они притягивают к себе, являются промежуточным звеном между живой и неживой материей. Кристаллы могут зарождаться, стареть, разрушаться. Кристалл, когда растет на затравке( на зародыше), наследует дефекты этого самого зародыша.

Кристалл чудодейственен своими свойствами, он выполняет саамы разные функции. Эти свойства заложены в его строении, которое имеет решетчатую трехмерную структуру. Как пример использования кристаллов можно взять кристалл кварца, который используется в телефонных трубках. Если на пластинку из кварца воздействовать механически, то в ней в соответствующем направлении возникнет электрический заряд. В трубке микрофона кварц преобразует механические колебания воздуха, вызванные говорящим, в электрические. Электрические колебания в трубке абонента преобразуются в колебательные, и, соответственно, он слышит речь. Будучи решетчатым, кристалл ограняется и каждая грань, как личность, своеобразна. Если грань плотно упакована в решетке материальными частицами(атомами или молекулами), то это очень медленно растущая грань. Например, алмаз. У него грани имеют форму октаэдра, они очень плотно упакованы атомами углерода, и отличаются в силу этого и блеском, и прочностью.

Глава 2. Практическая часть

Название работы : Выращивание кристаллов поваренной соли, медного купороса и сахара в домашних условиях

Цель: Вырастить кристаллы из насыщенных растворов соли, медного купороса, сахара и убедиться на опыте в том, что кристаллы данных веществ имеют правильную форму.

Актуальность выбранной темы.

Окружающий нас мир состоит из кристаллов, можно сказать, что мы живем в мире кристаллов. Жилые здания и промышленные сооружения, самолеты и ракеты, теплоходы и тепловозы, горные породы и минералы слагаются из кристаллов. Мы едим кристаллы, лечимся ими и частично состоим из кристаллов.

Кристаллы это вещества, в которых мельчайшие частицы “упакованы” в определенном порядке. В результате при росте кристаллов на их поверхности самопроизвольно возникают плоские грани, а сами кристаллы принимают разнообразную геометрическую форму. Интересно происхождение слова “кристалл”. Много веков назад в снегах Альп на территории современной Швейцарии нашли очень красивые бесцветные кристаллы, напоминающие чистый лед. Древние натуралисты так их и назвали – “кристаллос”, по-гречески лед. Полагали, что лед, находясь длительное время в горах, на сильном морозе, окаменевает и теряет способность таять. Аристотель писал, что “кристаллос рождается из воды, когда она полностью утрачивает теплоту”. Еще в средних веках этот термин “кристалл” применялся исключительно к кварцу. Вместе с тем большая часть природных минералов обладает кристаллическим строением. Первые минералоги интересовались прежде всего, именно формой кристаллов , разнообразие которой поражает. Знаменитый русский кристаллограф Е.С.Федоров который теоретически вывел законы построения кристаллов, говорил: “Кристаллы блещут симметрией”. Кристаллы действительно так хороши собой, что ими можно любоваться часами. Многие ученые, внесшие большой вклад в развитие химии и минералогии, начинали свои первые опыты с выращивания кристаллов, пытаясь понять, как они образуются.

И я решил начать свою исследовательскую работу поставив цель: получить кристаллы различных веществ в домашних условиях.

Цель исследования: исследование зависимости формы и размеров кристаллов от температуры

Задачи исследования:

1.  Вырастить монокристалл.

2.  Вырастить поликристалл.

Объект исследования:

1.  раствор медного купороса

2.  раствор поваренной соли

3. раствор сахара

Предмет исследования: кристаллы соли и сахара

Эксперимент № 1.Выращивание кристаллов поваренной соли

Этот процесс не требует наличия каких-то особых химических препаратов. Кристаллы поваренной соли NaCl представляют собой бесцветные прозрачные кубики.

Насыпал пищевую соль в стакан с водой при температуре 20°С и оставил на несколько минут, предварительно помешав. За это время соль растворилась. Затем добавил ещё соль и снова перемешал. Повторял этот этап до тех пор, пока соль уже не будет растворяться и будет оседать на дно стакана. Так я получил насыщенный раствор соли. Перелил его в чистый стакан такого же объёма, избавившись при этом от излишек соли на дне. Выбрал один более крупный кристаллик поваренной соли и положил его на дно стакана с насыщенным раствором. Уже через 3 дня было заметно значительный для кристаллика рост. С каждым днём он увеличивался. Затем проделал всё то же ещё раз (приготовил насыщенный раствор соли и опустил в него этот кристаллик), он стал расти гораздо быстрее — от размеров 0,3 до ,0,9 см за следующие 3 дня (см. рис. 5)

Рисунок 5. Бесцветные прозрачные кубики. поваренной соли

Эксперимент № 2.Выращивание кристаллов медного купороса

Раствор медного купороса приготовил следующим образом: налил воды в стакан (200 г) и поставил его в кастрюлю с тёплой водой при 50°С и начал растворять 100 г порошка медного купороса также, как и раствор поваренной соли, оставил на несколько дней. Сначала, способом быстрого испарения в открытом сосуде на стенках получил монокристалл медного купороса: (см. рис. 6)

 

Рисунок 6 Монокристалл, зародыш для поликристалла

Затем поместил его в новый раствор для дальнейшего наращивания при комнатной температуре и закрытом сосуде. Через 2 недели получил поликристалл размером 2,8 см (см рис. 7).     

 

Рисунок 7 Поликристалл размером 2,8 см

Эксперимент№3 Выращивание кристаллов сахара

Для того, чтобы вырастить кристалл из сахара нужно: Вскипятить воду и налить кипяток в стакан. Затем начать насыпать в воду сахар и постоянно помешивать. Продолжать делать это до тех пор, пока сахар не перестанет растворяться, т.е. пока раствор не станет перенасыщенным.Возьмите не слишком длинную тонкую нитку. Один конец нитки привяжите к карандашу прямо по центру, а ко второму концу привяжите маленький кристаллик сахара.(рис.8).

Рисунок 8. Затравка на карандаше.

Положите карандаш на стакан с сахарным раствором, а нитку опустите Дальше вам остается только ждать. В лучшем случае небольшой кристалл сахара сможет вырасти за 2-3 дня, а в худшем – вам придется ждать заметного результата полтора-два месяца(рис.9).

Рисунок 9. Выращенный кристалл сахара

Заключение.

Процесс выращивания кристаллов в домашних условиях это очень интересное и увлекательное занятие, позволяющее сознательно отнестись к закономерностям природы. Работа по выращиванию кристаллов сделала меня более наблюдательным, расширила мой кругозор, приобщила к науке, позволила удивляться. Переживание “чуда” выращивания принесло мне много положительных эмоций и ярких впечатлений. Исследовательская работа приоткрыла мне дверь в загадочную страну кристаллов и минералов.

Полученные мною кристаллы, можно использовать на уроках химии и физики как демонстрационный материал.

Литературные источники:

1. Энциклопедический словарь

2. МЕГАЭНЦИКЛОПЕДИЯ КИРИЛЛА И МЕФОДИЯ http://www.megabook.ru

3.Зоркий П. М. Симметрия молекул и кристаллических структур. М.: изд-во МГУ, 1986. - 232 с.

4.Лихачёв В. А., Малинин В. Г. Структурно-аналитическая теория прочности. — СПб: Наука. — 471 с.

5.Шаскольская М. П.. Кристаллы. М.: Наука, 1985. 208 с.

6. Материалы Интернета.

infourok.ru


Смотрите также

НАС УЖЕ 77 321

Подпишись на обновления сайта! Получай статьи на почту: